1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
use rustc_apfloat::{
    ieee::{Double, Single},
    Float,
};
use rustc_macros::HashStable;
use std::fmt;

use crate::ty::{
    layout::{HasDataLayout, Size},
    Ty,
};

use super::{sign_extend, truncate, AllocId, Allocation, InterpResult, Pointer, PointerArithmetic};

/// Represents the result of a raw const operation, pre-validation.
#[derive(Clone, HashStable)]
pub struct RawConst<'tcx> {
    // the value lives here, at offset 0, and that allocation definitely is a `AllocKind::Memory`
    // (so you can use `AllocMap::unwrap_memory`).
    pub alloc_id: AllocId,
    pub ty: Ty<'tcx>,
}

/// Represents a constant value in Rust. `Scalar` and `Slice` are optimizations for
/// array length computations, enum discriminants and the pattern matching logic.
#[derive(
    Copy,
    Clone,
    Debug,
    Eq,
    PartialEq,
    PartialOrd,
    Ord,
    RustcEncodable,
    RustcDecodable,
    Hash,
    HashStable
)]
pub enum ConstValue<'tcx> {
    /// Used only for types with `layout::abi::Scalar` ABI and ZSTs.
    ///
    /// Not using the enum `Value` to encode that this must not be `Undef`.
    Scalar(Scalar),

    /// Used only for `&[u8]` and `&str`
    Slice { data: &'tcx Allocation, start: usize, end: usize },

    /// A value not represented/representable by `Scalar` or `Slice`
    ByRef {
        /// The backing memory of the value, may contain more memory than needed for just the value
        /// in order to share `Allocation`s between values
        alloc: &'tcx Allocation,
        /// Offset into `alloc`
        offset: Size,
    },
}

#[cfg(target_arch = "x86_64")]
static_assert_size!(ConstValue<'_>, 32);

impl<'tcx> ConstValue<'tcx> {
    #[inline]
    pub fn try_to_scalar(&self) -> Option<Scalar> {
        match *self {
            ConstValue::ByRef { .. } | ConstValue::Slice { .. } => None,
            ConstValue::Scalar(val) => Some(val),
        }
    }
}

/// A `Scalar` represents an immediate, primitive value existing outside of a
/// `memory::Allocation`. It is in many ways like a small chunk of a `Allocation`, up to 8 bytes in
/// size. Like a range of bytes in an `Allocation`, a `Scalar` can either represent the raw bytes
/// of a simple value or a pointer into another `Allocation`
#[derive(
    Clone,
    Copy,
    Eq,
    PartialEq,
    Ord,
    PartialOrd,
    RustcEncodable,
    RustcDecodable,
    Hash,
    HashStable
)]
pub enum Scalar<Tag = (), Id = AllocId> {
    /// The raw bytes of a simple value.
    Raw {
        /// The first `size` bytes of `data` are the value.
        /// Do not try to read less or more bytes than that. The remaining bytes must be 0.
        data: u128,
        size: u8,
    },

    /// A pointer into an `Allocation`. An `Allocation` in the `memory` module has a list of
    /// relocations, but a `Scalar` is only large enough to contain one, so we just represent the
    /// relocation and its associated offset together as a `Pointer` here.
    Ptr(Pointer<Tag, Id>),
}

#[cfg(target_arch = "x86_64")]
static_assert_size!(Scalar, 24);

impl<Tag: fmt::Debug, Id: fmt::Debug> fmt::Debug for Scalar<Tag, Id> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Scalar::Ptr(ptr) => write!(f, "{:?}", ptr),
            &Scalar::Raw { data, size } => {
                Scalar::check_data(data, size);
                if size == 0 {
                    write!(f, "<ZST>")
                } else {
                    // Format as hex number wide enough to fit any value of the given `size`.
                    // So data=20, size=1 will be "0x14", but with size=4 it'll be "0x00000014".
                    write!(f, "0x{:>0width$x}", data, width = (size * 2) as usize)
                }
            }
        }
    }
}

impl<Tag> fmt::Display for Scalar<Tag> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Scalar::Ptr(_) => write!(f, "a pointer"),
            Scalar::Raw { data, .. } => write!(f, "{}", data),
        }
    }
}

impl<Tag> From<Single> for Scalar<Tag> {
    #[inline(always)]
    fn from(f: Single) -> Self {
        Scalar::from_f32(f)
    }
}

impl<Tag> From<Double> for Scalar<Tag> {
    #[inline(always)]
    fn from(f: Double) -> Self {
        Scalar::from_f64(f)
    }
}

impl Scalar<()> {
    #[inline(always)]
    fn check_data(data: u128, size: u8) {
        debug_assert_eq!(
            truncate(data, Size::from_bytes(size as u64)),
            data,
            "Scalar value {:#x} exceeds size of {} bytes",
            data,
            size
        );
    }

    /// Tag this scalar with `new_tag` if it is a pointer, leave it unchanged otherwise.
    ///
    /// Used by `MemPlace::replace_tag`.
    #[inline]
    pub fn with_tag<Tag>(self, new_tag: Tag) -> Scalar<Tag> {
        match self {
            Scalar::Ptr(ptr) => Scalar::Ptr(ptr.with_tag(new_tag)),
            Scalar::Raw { data, size } => Scalar::Raw { data, size },
        }
    }
}

impl<'tcx, Tag> Scalar<Tag> {
    /// Erase the tag from the scalar, if any.
    ///
    /// Used by error reporting code to avoid having the error type depend on `Tag`.
    #[inline]
    pub fn erase_tag(self) -> Scalar {
        match self {
            Scalar::Ptr(ptr) => Scalar::Ptr(ptr.erase_tag()),
            Scalar::Raw { data, size } => Scalar::Raw { data, size },
        }
    }

    #[inline]
    pub fn ptr_null(cx: &impl HasDataLayout) -> Self {
        Scalar::Raw { data: 0, size: cx.data_layout().pointer_size.bytes() as u8 }
    }

    #[inline]
    pub fn zst() -> Self {
        Scalar::Raw { data: 0, size: 0 }
    }

    #[inline]
    pub fn ptr_offset(self, i: Size, cx: &impl HasDataLayout) -> InterpResult<'tcx, Self> {
        let dl = cx.data_layout();
        match self {
            Scalar::Raw { data, size } => {
                assert_eq!(size as u64, dl.pointer_size.bytes());
                Ok(Scalar::Raw { data: dl.offset(data as u64, i.bytes())? as u128, size })
            }
            Scalar::Ptr(ptr) => ptr.offset(i, dl).map(Scalar::Ptr),
        }
    }

    #[inline]
    pub fn ptr_wrapping_offset(self, i: Size, cx: &impl HasDataLayout) -> Self {
        let dl = cx.data_layout();
        match self {
            Scalar::Raw { data, size } => {
                assert_eq!(size as u64, dl.pointer_size.bytes());
                Scalar::Raw { data: dl.overflowing_offset(data as u64, i.bytes()).0 as u128, size }
            }
            Scalar::Ptr(ptr) => Scalar::Ptr(ptr.wrapping_offset(i, dl)),
        }
    }

    #[inline]
    pub fn ptr_signed_offset(self, i: i64, cx: &impl HasDataLayout) -> InterpResult<'tcx, Self> {
        let dl = cx.data_layout();
        match self {
            Scalar::Raw { data, size } => {
                assert_eq!(size as u64, dl.pointer_size().bytes());
                Ok(Scalar::Raw { data: dl.signed_offset(data as u64, i)? as u128, size })
            }
            Scalar::Ptr(ptr) => ptr.signed_offset(i, dl).map(Scalar::Ptr),
        }
    }

    #[inline]
    pub fn ptr_wrapping_signed_offset(self, i: i64, cx: &impl HasDataLayout) -> Self {
        let dl = cx.data_layout();
        match self {
            Scalar::Raw { data, size } => {
                assert_eq!(size as u64, dl.pointer_size.bytes());
                Scalar::Raw {
                    data: dl.overflowing_signed_offset(data as u64, i128::from(i)).0 as u128,
                    size,
                }
            }
            Scalar::Ptr(ptr) => Scalar::Ptr(ptr.wrapping_signed_offset(i, dl)),
        }
    }

    #[inline]
    pub fn from_bool(b: bool) -> Self {
        Scalar::Raw { data: b as u128, size: 1 }
    }

    #[inline]
    pub fn from_char(c: char) -> Self {
        Scalar::Raw { data: c as u128, size: 4 }
    }

    #[inline]
    pub fn try_from_uint(i: impl Into<u128>, size: Size) -> Option<Self> {
        let i = i.into();
        if truncate(i, size) == i {
            Some(Scalar::Raw { data: i, size: size.bytes() as u8 })
        } else {
            None
        }
    }

    #[inline]
    pub fn from_uint(i: impl Into<u128>, size: Size) -> Self {
        let i = i.into();
        Self::try_from_uint(i, size)
            .unwrap_or_else(|| bug!("Unsigned value {:#x} does not fit in {} bits", i, size.bits()))
    }

    #[inline]
    pub fn from_u8(i: u8) -> Self {
        Scalar::Raw { data: i as u128, size: 1 }
    }

    #[inline]
    pub fn from_u16(i: u16) -> Self {
        Scalar::Raw { data: i as u128, size: 2 }
    }

    #[inline]
    pub fn from_u32(i: u32) -> Self {
        Scalar::Raw { data: i as u128, size: 4 }
    }

    #[inline]
    pub fn from_u64(i: u64) -> Self {
        Scalar::Raw { data: i as u128, size: 8 }
    }

    #[inline]
    pub fn try_from_int(i: impl Into<i128>, size: Size) -> Option<Self> {
        let i = i.into();
        // `into` performed sign extension, we have to truncate
        let truncated = truncate(i as u128, size);
        if sign_extend(truncated, size) as i128 == i {
            Some(Scalar::Raw { data: truncated, size: size.bytes() as u8 })
        } else {
            None
        }
    }

    #[inline]
    pub fn from_int(i: impl Into<i128>, size: Size) -> Self {
        let i = i.into();
        Self::try_from_int(i, size)
            .unwrap_or_else(|| bug!("Signed value {:#x} does not fit in {} bits", i, size.bits()))
    }

    #[inline]
    pub fn from_f32(f: Single) -> Self {
        // We trust apfloat to give us properly truncated data.
        Scalar::Raw { data: f.to_bits(), size: 4 }
    }

    #[inline]
    pub fn from_f64(f: Double) -> Self {
        // We trust apfloat to give us properly truncated data.
        Scalar::Raw { data: f.to_bits(), size: 8 }
    }

    /// This is very rarely the method you want!  You should dispatch on the type
    /// and use `force_bits`/`assert_bits`/`force_ptr`/`assert_ptr`.
    /// This method only exists for the benefit of low-level memory operations
    /// as well as the implementation of the `force_*` methods.
    #[inline]
    pub fn to_bits_or_ptr(
        self,
        target_size: Size,
        cx: &impl HasDataLayout,
    ) -> Result<u128, Pointer<Tag>> {
        match self {
            Scalar::Raw { data, size } => {
                assert_eq!(target_size.bytes(), size as u64);
                assert_ne!(size, 0, "you should never look at the bits of a ZST");
                Scalar::check_data(data, size);
                Ok(data)
            }
            Scalar::Ptr(ptr) => {
                assert_eq!(target_size, cx.data_layout().pointer_size);
                Err(ptr)
            }
        }
    }

    #[inline(always)]
    pub fn check_raw(data: u128, size: u8, target_size: Size) {
        assert_eq!(target_size.bytes(), size as u64);
        assert_ne!(size, 0, "you should never look at the bits of a ZST");
        Scalar::check_data(data, size);
    }

    /// Do not call this method!  Use either `assert_bits` or `force_bits`.
    #[inline]
    pub fn to_bits(self, target_size: Size) -> InterpResult<'tcx, u128> {
        match self {
            Scalar::Raw { data, size } => {
                Self::check_raw(data, size, target_size);
                Ok(data)
            }
            Scalar::Ptr(_) => throw_unsup!(ReadPointerAsBytes),
        }
    }

    #[inline(always)]
    pub fn assert_bits(self, target_size: Size) -> u128 {
        self.to_bits(target_size).expect("expected Raw bits but got a Pointer")
    }

    /// Do not call this method!  Use either `assert_ptr` or `force_ptr`.
    /// This method is intentionally private, do not make it public.
    #[inline]
    fn to_ptr(self) -> InterpResult<'tcx, Pointer<Tag>> {
        match self {
            Scalar::Raw { data: 0, .. } => throw_unsup!(InvalidNullPointerUsage),
            Scalar::Raw { .. } => throw_unsup!(ReadBytesAsPointer),
            Scalar::Ptr(p) => Ok(p),
        }
    }

    #[inline(always)]
    pub fn assert_ptr(self) -> Pointer<Tag> {
        self.to_ptr().expect("expected a Pointer but got Raw bits")
    }

    /// Do not call this method!  Dispatch based on the type instead.
    #[inline]
    pub fn is_bits(self) -> bool {
        match self {
            Scalar::Raw { .. } => true,
            _ => false,
        }
    }

    /// Do not call this method!  Dispatch based on the type instead.
    #[inline]
    pub fn is_ptr(self) -> bool {
        match self {
            Scalar::Ptr(_) => true,
            _ => false,
        }
    }

    pub fn to_bool(self) -> InterpResult<'tcx, bool> {
        match self {
            Scalar::Raw { data: 0, size: 1 } => Ok(false),
            Scalar::Raw { data: 1, size: 1 } => Ok(true),
            _ => throw_unsup!(InvalidBool),
        }
    }

    pub fn to_char(self) -> InterpResult<'tcx, char> {
        let val = self.to_u32()?;
        match ::std::char::from_u32(val) {
            Some(c) => Ok(c),
            None => throw_unsup!(InvalidChar(val as u128)),
        }
    }

    #[inline]
    fn to_unsigned_with_bit_width(self, bits: u64) -> InterpResult<'static, u128> {
        let sz = Size::from_bits(bits);
        self.to_bits(sz)
    }

    /// Converts the scalar to produce an `u8`. Fails if the scalar is a pointer.
    pub fn to_u8(self) -> InterpResult<'static, u8> {
        self.to_unsigned_with_bit_width(8).map(|v| v as u8)
    }

    /// Converts the scalar to produce an `u16`. Fails if the scalar is a pointer.
    pub fn to_u16(self) -> InterpResult<'static, u16> {
        self.to_unsigned_with_bit_width(16).map(|v| v as u16)
    }

    /// Converts the scalar to produce an `u32`. Fails if the scalar is a pointer.
    pub fn to_u32(self) -> InterpResult<'static, u32> {
        self.to_unsigned_with_bit_width(32).map(|v| v as u32)
    }

    /// Converts the scalar to produce an `u64`. Fails if the scalar is a pointer.
    pub fn to_u64(self) -> InterpResult<'static, u64> {
        self.to_unsigned_with_bit_width(64).map(|v| v as u64)
    }

    pub fn to_machine_usize(self, cx: &impl HasDataLayout) -> InterpResult<'static, u64> {
        let b = self.to_bits(cx.data_layout().pointer_size)?;
        Ok(b as u64)
    }

    #[inline]
    fn to_signed_with_bit_width(self, bits: u64) -> InterpResult<'static, i128> {
        let sz = Size::from_bits(bits);
        let b = self.to_bits(sz)?;
        Ok(sign_extend(b, sz) as i128)
    }

    /// Converts the scalar to produce an `i8`. Fails if the scalar is a pointer.
    pub fn to_i8(self) -> InterpResult<'static, i8> {
        self.to_signed_with_bit_width(8).map(|v| v as i8)
    }

    /// Converts the scalar to produce an `i16`. Fails if the scalar is a pointer.
    pub fn to_i16(self) -> InterpResult<'static, i16> {
        self.to_signed_with_bit_width(16).map(|v| v as i16)
    }

    /// Converts the scalar to produce an `i32`. Fails if the scalar is a pointer.
    pub fn to_i32(self) -> InterpResult<'static, i32> {
        self.to_signed_with_bit_width(32).map(|v| v as i32)
    }

    /// Converts the scalar to produce an `i64`. Fails if the scalar is a pointer.
    pub fn to_i64(self) -> InterpResult<'static, i64> {
        self.to_signed_with_bit_width(64).map(|v| v as i64)
    }

    pub fn to_machine_isize(self, cx: &impl HasDataLayout) -> InterpResult<'static, i64> {
        let sz = cx.data_layout().pointer_size;
        let b = self.to_bits(sz)?;
        let b = sign_extend(b, sz) as i128;
        Ok(b as i64)
    }

    #[inline]
    pub fn to_f32(self) -> InterpResult<'static, Single> {
        // Going through `u32` to check size and truncation.
        Ok(Single::from_bits(self.to_u32()? as u128))
    }

    #[inline]
    pub fn to_f64(self) -> InterpResult<'static, Double> {
        // Going through `u64` to check size and truncation.
        Ok(Double::from_bits(self.to_u64()? as u128))
    }
}

impl<Tag> From<Pointer<Tag>> for Scalar<Tag> {
    #[inline(always)]
    fn from(ptr: Pointer<Tag>) -> Self {
        Scalar::Ptr(ptr)
    }
}

#[derive(Clone, Copy, Eq, PartialEq, RustcEncodable, RustcDecodable, HashStable, Hash)]
pub enum ScalarMaybeUndef<Tag = (), Id = AllocId> {
    Scalar(Scalar<Tag, Id>),
    Undef,
}

impl<Tag> From<Scalar<Tag>> for ScalarMaybeUndef<Tag> {
    #[inline(always)]
    fn from(s: Scalar<Tag>) -> Self {
        ScalarMaybeUndef::Scalar(s)
    }
}

impl<Tag> From<Pointer<Tag>> for ScalarMaybeUndef<Tag> {
    #[inline(always)]
    fn from(s: Pointer<Tag>) -> Self {
        ScalarMaybeUndef::Scalar(s.into())
    }
}

impl<Tag: fmt::Debug, Id: fmt::Debug> fmt::Debug for ScalarMaybeUndef<Tag, Id> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            ScalarMaybeUndef::Undef => write!(f, "Undef"),
            ScalarMaybeUndef::Scalar(s) => write!(f, "{:?}", s),
        }
    }
}

impl<Tag> fmt::Display for ScalarMaybeUndef<Tag> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            ScalarMaybeUndef::Undef => write!(f, "uninitialized bytes"),
            ScalarMaybeUndef::Scalar(s) => write!(f, "{}", s),
        }
    }
}

impl<'tcx, Tag> ScalarMaybeUndef<Tag> {
    /// Erase the tag from the scalar, if any.
    ///
    /// Used by error reporting code to avoid having the error type depend on `Tag`.
    #[inline]
    pub fn erase_tag(self) -> ScalarMaybeUndef {
        match self {
            ScalarMaybeUndef::Scalar(s) => ScalarMaybeUndef::Scalar(s.erase_tag()),
            ScalarMaybeUndef::Undef => ScalarMaybeUndef::Undef,
        }
    }

    #[inline]
    pub fn not_undef(self) -> InterpResult<'static, Scalar<Tag>> {
        match self {
            ScalarMaybeUndef::Scalar(scalar) => Ok(scalar),
            ScalarMaybeUndef::Undef => throw_unsup!(ReadUndefBytes(Size::ZERO)),
        }
    }

    /// Do not call this method!  Use either `assert_bits` or `force_bits`.
    #[inline(always)]
    pub fn to_bits(self, target_size: Size) -> InterpResult<'tcx, u128> {
        self.not_undef()?.to_bits(target_size)
    }

    #[inline(always)]
    pub fn to_bool(self) -> InterpResult<'tcx, bool> {
        self.not_undef()?.to_bool()
    }

    #[inline(always)]
    pub fn to_char(self) -> InterpResult<'tcx, char> {
        self.not_undef()?.to_char()
    }

    #[inline(always)]
    pub fn to_f32(self) -> InterpResult<'tcx, Single> {
        self.not_undef()?.to_f32()
    }

    #[inline(always)]
    pub fn to_f64(self) -> InterpResult<'tcx, Double> {
        self.not_undef()?.to_f64()
    }

    #[inline(always)]
    pub fn to_u8(self) -> InterpResult<'tcx, u8> {
        self.not_undef()?.to_u8()
    }

    #[inline(always)]
    pub fn to_u32(self) -> InterpResult<'tcx, u32> {
        self.not_undef()?.to_u32()
    }

    #[inline(always)]
    pub fn to_u64(self) -> InterpResult<'tcx, u64> {
        self.not_undef()?.to_u64()
    }

    #[inline(always)]
    pub fn to_machine_usize(self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> {
        self.not_undef()?.to_machine_usize(cx)
    }

    #[inline(always)]
    pub fn to_i8(self) -> InterpResult<'tcx, i8> {
        self.not_undef()?.to_i8()
    }

    #[inline(always)]
    pub fn to_i32(self) -> InterpResult<'tcx, i32> {
        self.not_undef()?.to_i32()
    }

    #[inline(always)]
    pub fn to_i64(self) -> InterpResult<'tcx, i64> {
        self.not_undef()?.to_i64()
    }

    #[inline(always)]
    pub fn to_machine_isize(self, cx: &impl HasDataLayout) -> InterpResult<'tcx, i64> {
        self.not_undef()?.to_machine_isize(cx)
    }
}

/// Gets the bytes of a constant slice value.
pub fn get_slice_bytes<'tcx>(cx: &impl HasDataLayout, val: ConstValue<'tcx>) -> &'tcx [u8] {
    if let ConstValue::Slice { data, start, end } = val {
        let len = end - start;
        data.get_bytes(
            cx,
            // invent a pointer, only the offset is relevant anyway
            Pointer::new(AllocId(0), Size::from_bytes(start as u64)),
            Size::from_bytes(len as u64),
        )
        .unwrap_or_else(|err| bug!("const slice is invalid: {:?}", err))
    } else {
        bug!("expected const slice, but found another const value");
    }
}