1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
//! The virtual memory representation of the MIR interpreter.

use super::{
    read_target_uint, write_target_uint, AllocId, InterpResult, Pointer, Scalar, ScalarMaybeUndef,
};

use crate::ty::layout::{Align, Size};

use rustc_data_structures::sorted_map::SortedMap;
use rustc_target::abi::HasDataLayout;
use std::borrow::Cow;
use std::iter;
use std::ops::{Deref, DerefMut, Range};
use syntax::ast::Mutability;

// NOTE: When adding new fields, make sure to adjust the `Snapshot` impl in
// `src/librustc_mir/interpret/snapshot.rs`.
#[derive(
    Clone,
    Debug,
    Eq,
    PartialEq,
    PartialOrd,
    Ord,
    Hash,
    RustcEncodable,
    RustcDecodable,
    HashStable
)]
pub struct Allocation<Tag = (), Extra = ()> {
    /// The actual bytes of the allocation.
    /// Note that the bytes of a pointer represent the offset of the pointer.
    bytes: Vec<u8>,
    /// Maps from byte addresses to extra data for each pointer.
    /// Only the first byte of a pointer is inserted into the map; i.e.,
    /// every entry in this map applies to `pointer_size` consecutive bytes starting
    /// at the given offset.
    relocations: Relocations<Tag>,
    /// Denotes which part of this allocation is initialized.
    undef_mask: UndefMask,
    /// The size of the allocation. Currently, must always equal `bytes.len()`.
    pub size: Size,
    /// The alignment of the allocation to detect unaligned reads.
    pub align: Align,
    /// `true` if the allocation is mutable.
    /// Also used by codegen to determine if a static should be put into mutable memory,
    /// which happens for `static mut` and `static` with interior mutability.
    pub mutability: Mutability,
    /// Extra state for the machine.
    pub extra: Extra,
}

pub trait AllocationExtra<Tag>: ::std::fmt::Debug + Clone {
    // There is no constructor in here because the constructor's type depends
    // on `MemoryKind`, and making things sufficiently generic leads to painful
    // inference failure.

    /// Hook for performing extra checks on a memory read access.
    ///
    /// Takes read-only access to the allocation so we can keep all the memory read
    /// operations take `&self`. Use a `RefCell` in `AllocExtra` if you
    /// need to mutate.
    #[inline(always)]
    fn memory_read(
        _alloc: &Allocation<Tag, Self>,
        _ptr: Pointer<Tag>,
        _size: Size,
    ) -> InterpResult<'tcx> {
        Ok(())
    }

    /// Hook for performing extra checks on a memory write access.
    #[inline(always)]
    fn memory_written(
        _alloc: &mut Allocation<Tag, Self>,
        _ptr: Pointer<Tag>,
        _size: Size,
    ) -> InterpResult<'tcx> {
        Ok(())
    }

    /// Hook for performing extra checks on a memory deallocation.
    /// `size` will be the size of the allocation.
    #[inline(always)]
    fn memory_deallocated(
        _alloc: &mut Allocation<Tag, Self>,
        _ptr: Pointer<Tag>,
        _size: Size,
    ) -> InterpResult<'tcx> {
        Ok(())
    }
}

// For `Tag = ()` and no extra state, we have a trivial implementation.
impl AllocationExtra<()> for () {}

// The constructors are all without extra; the extra gets added by a machine hook later.
impl<Tag> Allocation<Tag> {
    /// Creates a read-only allocation initialized by the given bytes
    pub fn from_bytes<'a>(slice: impl Into<Cow<'a, [u8]>>, align: Align) -> Self {
        let bytes = slice.into().into_owned();
        let size = Size::from_bytes(bytes.len() as u64);
        Self {
            bytes,
            relocations: Relocations::new(),
            undef_mask: UndefMask::new(size, true),
            size,
            align,
            mutability: Mutability::Not,
            extra: (),
        }
    }

    pub fn from_byte_aligned_bytes<'a>(slice: impl Into<Cow<'a, [u8]>>) -> Self {
        Allocation::from_bytes(slice, Align::from_bytes(1).unwrap())
    }

    pub fn undef(size: Size, align: Align) -> Self {
        assert_eq!(size.bytes() as usize as u64, size.bytes());
        Allocation {
            bytes: vec![0; size.bytes() as usize],
            relocations: Relocations::new(),
            undef_mask: UndefMask::new(size, false),
            size,
            align,
            mutability: Mutability::Mut,
            extra: (),
        }
    }
}

impl Allocation<(), ()> {
    /// Add Tag and Extra fields
    pub fn with_tags_and_extra<T, E>(
        self,
        mut tagger: impl FnMut(AllocId) -> T,
        extra: E,
    ) -> Allocation<T, E> {
        Allocation {
            bytes: self.bytes,
            size: self.size,
            relocations: Relocations::from_presorted(
                self.relocations
                    .iter()
                    // The allocations in the relocations (pointers stored *inside* this allocation)
                    // all get the base pointer tag.
                    .map(|&(offset, ((), alloc))| {
                        let tag = tagger(alloc);
                        (offset, (tag, alloc))
                    })
                    .collect(),
            ),
            undef_mask: self.undef_mask,
            align: self.align,
            mutability: self.mutability,
            extra,
        }
    }
}

/// Raw accessors. Provide access to otherwise private bytes.
impl<Tag, Extra> Allocation<Tag, Extra> {
    pub fn len(&self) -> usize {
        self.size.bytes() as usize
    }

    /// Looks at a slice which may describe undefined bytes or describe a relocation. This differs
    /// from `get_bytes_with_undef_and_ptr` in that it does no relocation checks (even on the
    /// edges) at all. It further ignores `AllocationExtra` callbacks.
    /// This must not be used for reads affecting the interpreter execution.
    pub fn inspect_with_undef_and_ptr_outside_interpreter(&self, range: Range<usize>) -> &[u8] {
        &self.bytes[range]
    }

    /// Returns the undef mask.
    pub fn undef_mask(&self) -> &UndefMask {
        &self.undef_mask
    }

    /// Returns the relocation list.
    pub fn relocations(&self) -> &Relocations<Tag> {
        &self.relocations
    }
}

impl<'tcx> rustc_serialize::UseSpecializedDecodable for &'tcx Allocation {}

/// Byte accessors.
impl<'tcx, Tag: Copy, Extra: AllocationExtra<Tag>> Allocation<Tag, Extra> {
    /// Just a small local helper function to avoid a bit of code repetition.
    /// Returns the range of this allocation that was meant.
    #[inline]
    fn check_bounds(&self, offset: Size, size: Size) -> Range<usize> {
        let end = offset + size; // This does overflow checking.
        assert_eq!(
            end.bytes() as usize as u64,
            end.bytes(),
            "cannot handle this access on this host architecture"
        );
        let end = end.bytes() as usize;
        assert!(
            end <= self.len(),
            "Out-of-bounds access at offset {}, size {} in allocation of size {}",
            offset.bytes(),
            size.bytes(),
            self.len()
        );
        (offset.bytes() as usize)..end
    }

    /// The last argument controls whether we error out when there are undefined
    /// or pointer bytes. You should never call this, call `get_bytes` or
    /// `get_bytes_with_undef_and_ptr` instead,
    ///
    /// This function also guarantees that the resulting pointer will remain stable
    /// even when new allocations are pushed to the `HashMap`. `copy_repeatedly` relies
    /// on that.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    fn get_bytes_internal(
        &self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        size: Size,
        check_defined_and_ptr: bool,
    ) -> InterpResult<'tcx, &[u8]> {
        let range = self.check_bounds(ptr.offset, size);

        if check_defined_and_ptr {
            self.check_defined(ptr, size)?;
            self.check_relocations(cx, ptr, size)?;
        } else {
            // We still don't want relocations on the *edges*.
            self.check_relocation_edges(cx, ptr, size)?;
        }

        AllocationExtra::memory_read(self, ptr, size)?;

        Ok(&self.bytes[range])
    }

    /// Checks that these bytes are initialized and not pointer bytes, and then return them
    /// as a slice.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods
    /// on `InterpCx` instead.
    #[inline]
    pub fn get_bytes(
        &self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        size: Size,
    ) -> InterpResult<'tcx, &[u8]> {
        self.get_bytes_internal(cx, ptr, size, true)
    }

    /// It is the caller's responsibility to handle undefined and pointer bytes.
    /// However, this still checks that there are no relocations on the *edges*.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    #[inline]
    pub fn get_bytes_with_undef_and_ptr(
        &self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        size: Size,
    ) -> InterpResult<'tcx, &[u8]> {
        self.get_bytes_internal(cx, ptr, size, false)
    }

    /// Just calling this already marks everything as defined and removes relocations,
    /// so be sure to actually put data there!
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods
    /// on `InterpCx` instead.
    pub fn get_bytes_mut(
        &mut self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        size: Size,
    ) -> InterpResult<'tcx, &mut [u8]> {
        let range = self.check_bounds(ptr.offset, size);

        self.mark_definedness(ptr, size, true);
        self.clear_relocations(cx, ptr, size)?;

        AllocationExtra::memory_written(self, ptr, size)?;

        Ok(&mut self.bytes[range])
    }
}

/// Reading and writing.
impl<'tcx, Tag: Copy, Extra: AllocationExtra<Tag>> Allocation<Tag, Extra> {
    /// Reads bytes until a `0` is encountered. Will error if the end of the allocation is reached
    /// before a `0` is found.
    ///
    /// Most likely, you want to call `Memory::read_c_str` instead of this method.
    pub fn read_c_str(
        &self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
    ) -> InterpResult<'tcx, &[u8]> {
        assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes());
        let offset = ptr.offset.bytes() as usize;
        Ok(match self.bytes[offset..].iter().position(|&c| c == 0) {
            Some(size) => {
                let size_with_null = Size::from_bytes((size + 1) as u64);
                // Go through `get_bytes` for checks and AllocationExtra hooks.
                // We read the null, so we include it in the request, but we want it removed
                // from the result, so we do subslicing.
                &self.get_bytes(cx, ptr, size_with_null)?[..size]
            }
            // This includes the case where `offset` is out-of-bounds to begin with.
            None => throw_unsup!(UnterminatedCString(ptr.erase_tag())),
        })
    }

    /// Validates that `ptr.offset` and `ptr.offset + size` do not point to the middle of a
    /// relocation. If `allow_ptr_and_undef` is `false`, also enforces that the memory in the
    /// given range contains neither relocations nor undef bytes.
    pub fn check_bytes(
        &self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        size: Size,
        allow_ptr_and_undef: bool,
    ) -> InterpResult<'tcx> {
        // Check bounds and relocations on the edges.
        self.get_bytes_with_undef_and_ptr(cx, ptr, size)?;
        // Check undef and ptr.
        if !allow_ptr_and_undef {
            self.check_defined(ptr, size)?;
            self.check_relocations(cx, ptr, size)?;
        }
        Ok(())
    }

    /// Writes `src` to the memory starting at `ptr.offset`.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to call `Memory::write_bytes` instead of this method.
    pub fn write_bytes(
        &mut self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        src: impl IntoIterator<Item = u8>,
    ) -> InterpResult<'tcx> {
        let mut src = src.into_iter();
        let (lower, upper) = src.size_hint();
        let len = upper.expect("can only write bounded iterators");
        assert_eq!(lower, len, "can only write iterators with a precise length");
        let bytes = self.get_bytes_mut(cx, ptr, Size::from_bytes(len as u64))?;
        // `zip` would stop when the first iterator ends; we want to definitely
        // cover all of `bytes`.
        for dest in bytes {
            *dest = src.next().expect("iterator was shorter than it said it would be");
        }
        src.next().expect_none("iterator was longer than it said it would be");
        Ok(())
    }

    /// Reads a *non-ZST* scalar.
    ///
    /// ZSTs can't be read for two reasons:
    /// * byte-order cannot work with zero-element buffers;
    /// * in order to obtain a `Pointer`, we need to check for ZSTness anyway due to integer
    ///   pointers being valid for ZSTs.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to call `InterpCx::read_scalar` instead of this method.
    pub fn read_scalar(
        &self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        size: Size,
    ) -> InterpResult<'tcx, ScalarMaybeUndef<Tag>> {
        // `get_bytes_unchecked` tests relocation edges.
        let bytes = self.get_bytes_with_undef_and_ptr(cx, ptr, size)?;
        // Undef check happens *after* we established that the alignment is correct.
        // We must not return `Ok()` for unaligned pointers!
        if self.check_defined(ptr, size).is_err() {
            // This inflates undefined bytes to the entire scalar, even if only a few
            // bytes are undefined.
            return Ok(ScalarMaybeUndef::Undef);
        }
        // Now we do the actual reading.
        let bits = read_target_uint(cx.data_layout().endian, bytes).unwrap();
        // See if we got a pointer.
        if size != cx.data_layout().pointer_size {
            // *Now*, we better make sure that the inside is free of relocations too.
            self.check_relocations(cx, ptr, size)?;
        } else {
            match self.relocations.get(&ptr.offset) {
                Some(&(tag, alloc_id)) => {
                    let ptr = Pointer::new_with_tag(alloc_id, Size::from_bytes(bits as u64), tag);
                    return Ok(ScalarMaybeUndef::Scalar(ptr.into()));
                }
                None => {}
            }
        }
        // We don't. Just return the bits.
        Ok(ScalarMaybeUndef::Scalar(Scalar::from_uint(bits, size)))
    }

    /// Reads a pointer-sized scalar.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to call `InterpCx::read_scalar` instead of this method.
    pub fn read_ptr_sized(
        &self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
    ) -> InterpResult<'tcx, ScalarMaybeUndef<Tag>> {
        self.read_scalar(cx, ptr, cx.data_layout().pointer_size)
    }

    /// Writes a *non-ZST* scalar.
    ///
    /// ZSTs can't be read for two reasons:
    /// * byte-order cannot work with zero-element buffers;
    /// * in order to obtain a `Pointer`, we need to check for ZSTness anyway due to integer
    ///   pointers being valid for ZSTs.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to call `InterpCx::write_scalar` instead of this method.
    pub fn write_scalar(
        &mut self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        val: ScalarMaybeUndef<Tag>,
        type_size: Size,
    ) -> InterpResult<'tcx> {
        let val = match val {
            ScalarMaybeUndef::Scalar(scalar) => scalar,
            ScalarMaybeUndef::Undef => {
                self.mark_definedness(ptr, type_size, false);
                return Ok(());
            }
        };

        let bytes = match val.to_bits_or_ptr(type_size, cx) {
            Err(val) => val.offset.bytes() as u128,
            Ok(data) => data,
        };

        let endian = cx.data_layout().endian;
        let dst = self.get_bytes_mut(cx, ptr, type_size)?;
        write_target_uint(endian, dst, bytes).unwrap();

        // See if we have to also write a relocation.
        match val {
            Scalar::Ptr(val) => {
                self.relocations.insert(ptr.offset, (val.tag, val.alloc_id));
            }
            _ => {}
        }

        Ok(())
    }

    /// Writes a pointer-sized scalar.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to call `InterpCx::write_scalar` instead of this method.
    pub fn write_ptr_sized(
        &mut self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        val: ScalarMaybeUndef<Tag>,
    ) -> InterpResult<'tcx> {
        let ptr_size = cx.data_layout().pointer_size;
        self.write_scalar(cx, ptr.into(), val, ptr_size)
    }
}

/// Relocations.
impl<'tcx, Tag: Copy, Extra> Allocation<Tag, Extra> {
    /// Returns all relocations overlapping with the given pointer-offset pair.
    pub fn get_relocations(
        &self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        size: Size,
    ) -> &[(Size, (Tag, AllocId))] {
        // We have to go back `pointer_size - 1` bytes, as that one would still overlap with
        // the beginning of this range.
        let start = ptr.offset.bytes().saturating_sub(cx.data_layout().pointer_size.bytes() - 1);
        let end = ptr.offset + size; // This does overflow checking.
        self.relocations.range(Size::from_bytes(start)..end)
    }

    /// Checks that there are no relocations overlapping with the given range.
    #[inline(always)]
    fn check_relocations(
        &self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        size: Size,
    ) -> InterpResult<'tcx> {
        if self.get_relocations(cx, ptr, size).is_empty() {
            Ok(())
        } else {
            throw_unsup!(ReadPointerAsBytes)
        }
    }

    /// Removes all relocations inside the given range.
    /// If there are relocations overlapping with the edges, they
    /// are removed as well *and* the bytes they cover are marked as
    /// uninitialized. This is a somewhat odd "spooky action at a distance",
    /// but it allows strictly more code to run than if we would just error
    /// immediately in that case.
    fn clear_relocations(
        &mut self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        size: Size,
    ) -> InterpResult<'tcx> {
        // Find the start and end of the given range and its outermost relocations.
        let (first, last) = {
            // Find all relocations overlapping the given range.
            let relocations = self.get_relocations(cx, ptr, size);
            if relocations.is_empty() {
                return Ok(());
            }

            (
                relocations.first().unwrap().0,
                relocations.last().unwrap().0 + cx.data_layout().pointer_size,
            )
        };
        let start = ptr.offset;
        let end = start + size;

        // Mark parts of the outermost relocations as undefined if they partially fall outside the
        // given range.
        if first < start {
            self.undef_mask.set_range(first, start, false);
        }
        if last > end {
            self.undef_mask.set_range(end, last, false);
        }

        // Forget all the relocations.
        self.relocations.remove_range(first..last);

        Ok(())
    }

    /// Errors if there are relocations overlapping with the edges of the
    /// given memory range.
    #[inline]
    fn check_relocation_edges(
        &self,
        cx: &impl HasDataLayout,
        ptr: Pointer<Tag>,
        size: Size,
    ) -> InterpResult<'tcx> {
        self.check_relocations(cx, ptr, Size::ZERO)?;
        self.check_relocations(cx, ptr.offset(size, cx)?, Size::ZERO)?;
        Ok(())
    }
}

/// Undefined bytes.
impl<'tcx, Tag, Extra> Allocation<Tag, Extra> {
    /// Checks that a range of bytes is defined. If not, returns the `ReadUndefBytes`
    /// error which will report the first byte which is undefined.
    #[inline]
    fn check_defined(&self, ptr: Pointer<Tag>, size: Size) -> InterpResult<'tcx> {
        self.undef_mask
            .is_range_defined(ptr.offset, ptr.offset + size)
            .or_else(|idx| throw_unsup!(ReadUndefBytes(idx)))
    }

    pub fn mark_definedness(&mut self, ptr: Pointer<Tag>, size: Size, new_state: bool) {
        if size.bytes() == 0 {
            return;
        }
        self.undef_mask.set_range(ptr.offset, ptr.offset + size, new_state);
    }
}

/// Run-length encoding of the undef mask.
/// Used to copy parts of a mask multiple times to another allocation.
pub struct AllocationDefinedness {
    /// The definedness of the first range.
    initial: bool,
    /// The lengths of ranges that are run-length encoded.
    /// The definedness of the ranges alternate starting with `initial`.
    ranges: smallvec::SmallVec<[u64; 1]>,
}

impl AllocationDefinedness {
    pub fn all_bytes_undef(&self) -> bool {
        // The `ranges` are run-length encoded and of alternating definedness.
        // So if `ranges.len() > 1` then the second block is a range of defined.
        self.initial == false && self.ranges.len() == 1
    }
}

/// Transferring the definedness mask to other allocations.
impl<Tag, Extra> Allocation<Tag, Extra> {
    /// Creates a run-length encoding of the undef mask.
    pub fn compress_undef_range(&self, src: Pointer<Tag>, size: Size) -> AllocationDefinedness {
        // Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
        // a naive undef mask copying algorithm would repeatedly have to read the undef mask from
        // the source and write it to the destination. Even if we optimized the memory accesses,
        // we'd be doing all of this `repeat` times.
        // Therefor we precompute a compressed version of the undef mask of the source value and
        // then write it back `repeat` times without computing any more information from the source.

        // A precomputed cache for ranges of defined/undefined bits
        // 0000010010001110 will become
        // `[5, 1, 2, 1, 3, 3, 1]`,
        // where each element toggles the state.

        let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();
        let initial = self.undef_mask.get(src.offset);
        let mut cur_len = 1;
        let mut cur = initial;

        for i in 1..size.bytes() {
            // FIXME: optimize to bitshift the current undef block's bits and read the top bit.
            if self.undef_mask.get(src.offset + Size::from_bytes(i)) == cur {
                cur_len += 1;
            } else {
                ranges.push(cur_len);
                cur_len = 1;
                cur = !cur;
            }
        }

        ranges.push(cur_len);

        AllocationDefinedness { ranges, initial }
    }

    /// Applies multiple instances of the run-length encoding to the undef mask.
    pub fn mark_compressed_undef_range(
        &mut self,
        defined: &AllocationDefinedness,
        dest: Pointer<Tag>,
        size: Size,
        repeat: u64,
    ) {
        // An optimization where we can just overwrite an entire range of definedness bits if
        // they are going to be uniformly `1` or `0`.
        if defined.ranges.len() <= 1 {
            self.undef_mask.set_range_inbounds(
                dest.offset,
                dest.offset + size * repeat,
                defined.initial,
            );
            return;
        }

        for mut j in 0..repeat {
            j *= size.bytes();
            j += dest.offset.bytes();
            let mut cur = defined.initial;
            for range in &defined.ranges {
                let old_j = j;
                j += range;
                self.undef_mask.set_range_inbounds(
                    Size::from_bytes(old_j),
                    Size::from_bytes(j),
                    cur,
                );
                cur = !cur;
            }
        }
    }
}

/// Relocations.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct Relocations<Tag = (), Id = AllocId>(SortedMap<Size, (Tag, Id)>);

impl<Tag, Id> Relocations<Tag, Id> {
    pub fn new() -> Self {
        Relocations(SortedMap::new())
    }

    // The caller must guarantee that the given relocations are already sorted
    // by address and contain no duplicates.
    pub fn from_presorted(r: Vec<(Size, (Tag, Id))>) -> Self {
        Relocations(SortedMap::from_presorted_elements(r))
    }
}

impl<Tag> Deref for Relocations<Tag> {
    type Target = SortedMap<Size, (Tag, AllocId)>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<Tag> DerefMut for Relocations<Tag> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

/// A partial, owned list of relocations to transfer into another allocation.
pub struct AllocationRelocations<Tag> {
    relative_relocations: Vec<(Size, (Tag, AllocId))>,
}

impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
    pub fn prepare_relocation_copy(
        &self,
        cx: &impl HasDataLayout,
        src: Pointer<Tag>,
        size: Size,
        dest: Pointer<Tag>,
        length: u64,
    ) -> AllocationRelocations<Tag> {
        let relocations = self.get_relocations(cx, src, size);
        if relocations.is_empty() {
            return AllocationRelocations { relative_relocations: Vec::new() };
        }

        let mut new_relocations = Vec::with_capacity(relocations.len() * (length as usize));

        for i in 0..length {
            new_relocations.extend(relocations.iter().map(|&(offset, reloc)| {
                // compute offset for current repetition
                let dest_offset = dest.offset + (i * size);
                (
                    // shift offsets from source allocation to destination allocation
                    offset + dest_offset - src.offset,
                    reloc,
                )
            }));
        }

        AllocationRelocations { relative_relocations: new_relocations }
    }

    /// Applies a relocation copy.
    /// The affected range, as defined in the parameters to `prepare_relocation_copy` is expected
    /// to be clear of relocations.
    pub fn mark_relocation_range(&mut self, relocations: AllocationRelocations<Tag>) {
        self.relocations.insert_presorted(relocations.relative_relocations);
    }
}

////////////////////////////////////////////////////////////////////////////////
// Undefined byte tracking
////////////////////////////////////////////////////////////////////////////////

type Block = u64;

/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
/// is defined. If it is `false` the byte is undefined.
#[derive(
    Clone,
    Debug,
    Eq,
    PartialEq,
    PartialOrd,
    Ord,
    Hash,
    RustcEncodable,
    RustcDecodable,
    HashStable
)]
pub struct UndefMask {
    blocks: Vec<Block>,
    len: Size,
}

impl UndefMask {
    pub const BLOCK_SIZE: u64 = 64;

    pub fn new(size: Size, state: bool) -> Self {
        let mut m = UndefMask { blocks: vec![], len: Size::ZERO };
        m.grow(size, state);
        m
    }

    /// Checks whether the range `start..end` (end-exclusive) is entirely defined.
    ///
    /// Returns `Ok(())` if it's defined. Otherwise returns the index of the byte
    /// at which the first undefined access begins.
    #[inline]
    pub fn is_range_defined(&self, start: Size, end: Size) -> Result<(), Size> {
        if end > self.len {
            return Err(self.len);
        }

        // FIXME(oli-obk): optimize this for allocations larger than a block.
        let idx = (start.bytes()..end.bytes()).map(|i| Size::from_bytes(i)).find(|&i| !self.get(i));

        match idx {
            Some(idx) => Err(idx),
            None => Ok(()),
        }
    }

    pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) {
        let len = self.len;
        if end > len {
            self.grow(end - len, new_state);
        }
        self.set_range_inbounds(start, end, new_state);
    }

    pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
        let (blocka, bita) = bit_index(start);
        let (blockb, bitb) = bit_index(end);
        if blocka == blockb {
            // First set all bits except the first `bita`,
            // then unset the last `64 - bitb` bits.
            let range = if bitb == 0 {
                u64::max_value() << bita
            } else {
                (u64::max_value() << bita) & (u64::max_value() >> (64 - bitb))
            };
            if new_state {
                self.blocks[blocka] |= range;
            } else {
                self.blocks[blocka] &= !range;
            }
            return;
        }
        // across block boundaries
        if new_state {
            // Set `bita..64` to `1`.
            self.blocks[blocka] |= u64::max_value() << bita;
            // Set `0..bitb` to `1`.
            if bitb != 0 {
                self.blocks[blockb] |= u64::max_value() >> (64 - bitb);
            }
            // Fill in all the other blocks (much faster than one bit at a time).
            for block in (blocka + 1)..blockb {
                self.blocks[block] = u64::max_value();
            }
        } else {
            // Set `bita..64` to `0`.
            self.blocks[blocka] &= !(u64::max_value() << bita);
            // Set `0..bitb` to `0`.
            if bitb != 0 {
                self.blocks[blockb] &= !(u64::max_value() >> (64 - bitb));
            }
            // Fill in all the other blocks (much faster than one bit at a time).
            for block in (blocka + 1)..blockb {
                self.blocks[block] = 0;
            }
        }
    }

    #[inline]
    pub fn get(&self, i: Size) -> bool {
        let (block, bit) = bit_index(i);
        (self.blocks[block] & (1 << bit)) != 0
    }

    #[inline]
    pub fn set(&mut self, i: Size, new_state: bool) {
        let (block, bit) = bit_index(i);
        self.set_bit(block, bit, new_state);
    }

    #[inline]
    fn set_bit(&mut self, block: usize, bit: usize, new_state: bool) {
        if new_state {
            self.blocks[block] |= 1 << bit;
        } else {
            self.blocks[block] &= !(1 << bit);
        }
    }

    pub fn grow(&mut self, amount: Size, new_state: bool) {
        if amount.bytes() == 0 {
            return;
        }
        let unused_trailing_bits = self.blocks.len() as u64 * Self::BLOCK_SIZE - self.len.bytes();
        if amount.bytes() > unused_trailing_bits {
            let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
            assert_eq!(additional_blocks as usize as u64, additional_blocks);
            self.blocks.extend(
                // FIXME(oli-obk): optimize this by repeating `new_state as Block`.
                iter::repeat(0).take(additional_blocks as usize),
            );
        }
        let start = self.len;
        self.len += amount;
        self.set_range_inbounds(start, start + amount, new_state);
    }
}

#[inline]
fn bit_index(bits: Size) -> (usize, usize) {
    let bits = bits.bytes();
    let a = bits / UndefMask::BLOCK_SIZE;
    let b = bits % UndefMask::BLOCK_SIZE;
    assert_eq!(a as usize as u64, a);
    assert_eq!(b as usize as u64, b);
    (a as usize, b as usize)
}