1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use crate::ty::{self, FloatVarValue, InferConst, IntVarValue, Ty, TyCtxt};
use rustc_data_structures::unify::InPlace;
use rustc_data_structures::unify::{EqUnifyValue, NoError, UnificationTable, UnifyKey, UnifyValue};
use rustc_span::symbol::Symbol;
use rustc_span::{Span, DUMMY_SP};

use std::cmp;
use std::marker::PhantomData;

pub trait ToType {
    fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
}

/// Raw `TyVid` are used as the unification key for `sub_relations`;
/// they carry no values.
impl UnifyKey for ty::TyVid {
    type Value = ();
    fn index(&self) -> u32 {
        self.index
    }
    fn from_index(i: u32) -> ty::TyVid {
        ty::TyVid { index: i }
    }
    fn tag() -> &'static str {
        "TyVid"
    }
}

impl UnifyKey for ty::IntVid {
    type Value = Option<IntVarValue>;
    fn index(&self) -> u32 {
        self.index
    }
    fn from_index(i: u32) -> ty::IntVid {
        ty::IntVid { index: i }
    }
    fn tag() -> &'static str {
        "IntVid"
    }
}

impl EqUnifyValue for IntVarValue {}

#[derive(PartialEq, Copy, Clone, Debug)]
pub struct RegionVidKey {
    /// The minimum region vid in the unification set. This is needed
    /// to have a canonical name for a type to prevent infinite
    /// recursion.
    pub min_vid: ty::RegionVid,
}

impl UnifyValue for RegionVidKey {
    type Error = NoError;

    fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
        let min_vid = if value1.min_vid.index() < value2.min_vid.index() {
            value1.min_vid
        } else {
            value2.min_vid
        };

        Ok(RegionVidKey { min_vid })
    }
}

impl UnifyKey for ty::RegionVid {
    type Value = RegionVidKey;
    fn index(&self) -> u32 {
        u32::from(*self)
    }
    fn from_index(i: u32) -> ty::RegionVid {
        ty::RegionVid::from(i)
    }
    fn tag() -> &'static str {
        "RegionVid"
    }
}

impl ToType for IntVarValue {
    fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match *self {
            ty::IntType(i) => tcx.mk_mach_int(i),
            ty::UintType(i) => tcx.mk_mach_uint(i),
        }
    }
}

// Floating point type keys

impl UnifyKey for ty::FloatVid {
    type Value = Option<FloatVarValue>;
    fn index(&self) -> u32 {
        self.index
    }
    fn from_index(i: u32) -> ty::FloatVid {
        ty::FloatVid { index: i }
    }
    fn tag() -> &'static str {
        "FloatVid"
    }
}

impl EqUnifyValue for FloatVarValue {}

impl ToType for FloatVarValue {
    fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        tcx.mk_mach_float(self.0)
    }
}

// Generic consts.

#[derive(Copy, Clone, Debug)]
pub struct ConstVariableOrigin {
    pub kind: ConstVariableOriginKind,
    pub span: Span,
}

/// Reasons to create a const inference variable
#[derive(Copy, Clone, Debug)]
pub enum ConstVariableOriginKind {
    MiscVariable,
    ConstInference,
    ConstParameterDefinition(Symbol),
    SubstitutionPlaceholder,
}

#[derive(Copy, Clone, Debug)]
pub enum ConstVariableValue<'tcx> {
    Known { value: &'tcx ty::Const<'tcx> },
    Unknown { universe: ty::UniverseIndex },
}

impl<'tcx> ConstVariableValue<'tcx> {
    /// If this value is known, returns the const it is known to be.
    /// Otherwise, `None`.
    pub fn known(&self) -> Option<&'tcx ty::Const<'tcx>> {
        match *self {
            ConstVariableValue::Unknown { .. } => None,
            ConstVariableValue::Known { value } => Some(value),
        }
    }

    pub fn is_unknown(&self) -> bool {
        match *self {
            ConstVariableValue::Unknown { .. } => true,
            ConstVariableValue::Known { .. } => false,
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub struct ConstVarValue<'tcx> {
    pub origin: ConstVariableOrigin,
    pub val: ConstVariableValue<'tcx>,
}

impl<'tcx> UnifyKey for ty::ConstVid<'tcx> {
    type Value = ConstVarValue<'tcx>;
    fn index(&self) -> u32 {
        self.index
    }
    fn from_index(i: u32) -> Self {
        ty::ConstVid { index: i, phantom: PhantomData }
    }
    fn tag() -> &'static str {
        "ConstVid"
    }
}

impl<'tcx> UnifyValue for ConstVarValue<'tcx> {
    type Error = (&'tcx ty::Const<'tcx>, &'tcx ty::Const<'tcx>);

    fn unify_values(value1: &Self, value2: &Self) -> Result<Self, Self::Error> {
        let val = match (value1.val, value2.val) {
            (ConstVariableValue::Known { .. }, ConstVariableValue::Known { .. }) => {
                bug!("equating two const variables, both of which have known values")
            }

            // If one side is known, prefer that one.
            (ConstVariableValue::Known { .. }, ConstVariableValue::Unknown { .. }) => {
                Ok(value1.val)
            }
            (ConstVariableValue::Unknown { .. }, ConstVariableValue::Known { .. }) => {
                Ok(value2.val)
            }

            // If both sides are *unknown*, it hardly matters, does it?
            (
                ConstVariableValue::Unknown { universe: universe1 },
                ConstVariableValue::Unknown { universe: universe2 },
            ) => {
                // If we unify two unbound variables, ?T and ?U, then whatever
                // value they wind up taking (which must be the same value) must
                // be nameable by both universes. Therefore, the resulting
                // universe is the minimum of the two universes, because that is
                // the one which contains the fewest names in scope.
                let universe = cmp::min(universe1, universe2);
                Ok(ConstVariableValue::Unknown { universe })
            }
        }?;

        Ok(ConstVarValue {
            origin: ConstVariableOrigin {
                kind: ConstVariableOriginKind::ConstInference,
                span: DUMMY_SP,
            },
            val,
        })
    }
}

impl<'tcx> EqUnifyValue for &'tcx ty::Const<'tcx> {}

pub fn replace_if_possible(
    table: &mut UnificationTable<InPlace<ty::ConstVid<'tcx>>>,
    c: &'tcx ty::Const<'tcx>,
) -> &'tcx ty::Const<'tcx> {
    if let ty::Const { val: ty::ConstKind::Infer(InferConst::Var(vid)), .. } = c {
        match table.probe_value(*vid).val.known() {
            Some(c) => c,
            None => c,
        }
    } else {
        c
    }
}