1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
//! See `README.md`.

use self::CombineMapType::*;
use self::UndoLog::*;

use super::unify_key;
use super::{MiscVariable, RegionVariableOrigin, SubregionOrigin};

use crate::ty::ReStatic;
use crate::ty::{self, Ty, TyCtxt};
use crate::ty::{ReLateBound, ReVar};
use crate::ty::{Region, RegionVid};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::unify as ut;
use rustc_hir::def_id::DefId;
use rustc_index::vec::IndexVec;
use rustc_span::Span;

use std::collections::BTreeMap;
use std::ops::Range;
use std::{cmp, fmt, mem};

mod leak_check;

#[derive(Default)]
pub struct RegionConstraintCollector<'tcx> {
    /// For each `RegionVid`, the corresponding `RegionVariableOrigin`.
    var_infos: IndexVec<RegionVid, RegionVariableInfo>,

    data: RegionConstraintData<'tcx>,

    /// For a given pair of regions (R1, R2), maps to a region R3 that
    /// is designated as their LUB (edges R1 <= R3 and R2 <= R3
    /// exist). This prevents us from making many such regions.
    lubs: CombineMap<'tcx>,

    /// For a given pair of regions (R1, R2), maps to a region R3 that
    /// is designated as their GLB (edges R3 <= R1 and R3 <= R2
    /// exist). This prevents us from making many such regions.
    glbs: CombineMap<'tcx>,

    /// The undo log records actions that might later be undone.
    ///
    /// Note: `num_open_snapshots` is used to track if we are actively
    /// snapshotting. When the `start_snapshot()` method is called, we
    /// increment `num_open_snapshots` to indicate that we are now actively
    /// snapshotting. The reason for this is that otherwise we end up adding
    /// entries for things like the lower bound on a variable and so forth,
    /// which can never be rolled back.
    undo_log: Vec<UndoLog<'tcx>>,

    /// The number of open snapshots, i.e., those that haven't been committed or
    /// rolled back.
    num_open_snapshots: usize,

    /// When we add a R1 == R2 constriant, we currently add (a) edges
    /// R1 <= R2 and R2 <= R1 and (b) we unify the two regions in this
    /// table. You can then call `opportunistic_resolve_var` early
    /// which will map R1 and R2 to some common region (i.e., either
    /// R1 or R2). This is important when dropck and other such code
    /// is iterating to a fixed point, because otherwise we sometimes
    /// would wind up with a fresh stream of region variables that
    /// have been equated but appear distinct.
    unification_table: ut::UnificationTable<ut::InPlace<ty::RegionVid>>,

    /// a flag set to true when we perform any unifications; this is used
    /// to micro-optimize `take_and_reset_data`
    any_unifications: bool,
}

pub type VarInfos = IndexVec<RegionVid, RegionVariableInfo>;

/// The full set of region constraints gathered up by the collector.
/// Describes constraints between the region variables and other
/// regions, as well as other conditions that must be verified, or
/// assumptions that can be made.
#[derive(Debug, Default, Clone)]
pub struct RegionConstraintData<'tcx> {
    /// Constraints of the form `A <= B`, where either `A` or `B` can
    /// be a region variable (or neither, as it happens).
    pub constraints: BTreeMap<Constraint<'tcx>, SubregionOrigin<'tcx>>,

    /// Constraints of the form `R0 member of [R1, ..., Rn]`, meaning that
    /// `R0` must be equal to one of the regions `R1..Rn`. These occur
    /// with `impl Trait` quite frequently.
    pub member_constraints: Vec<MemberConstraint<'tcx>>,

    /// A "verify" is something that we need to verify after inference
    /// is done, but which does not directly affect inference in any
    /// way.
    ///
    /// An example is a `A <= B` where neither `A` nor `B` are
    /// inference variables.
    pub verifys: Vec<Verify<'tcx>>,

    /// A "given" is a relationship that is known to hold. In
    /// particular, we often know from closure fn signatures that a
    /// particular free region must be a subregion of a region
    /// variable:
    ///
    ///    foo.iter().filter(<'a> |x: &'a &'b T| ...)
    ///
    /// In situations like this, `'b` is in fact a region variable
    /// introduced by the call to `iter()`, and `'a` is a bound region
    /// on the closure (as indicated by the `<'a>` prefix). If we are
    /// naive, we wind up inferring that `'b` must be `'static`,
    /// because we require that it be greater than `'a` and we do not
    /// know what `'a` is precisely.
    ///
    /// This hashmap is used to avoid that naive scenario. Basically
    /// we record the fact that `'a <= 'b` is implied by the fn
    /// signature, and then ignore the constraint when solving
    /// equations. This is a bit of a hack but seems to work.
    pub givens: FxHashSet<(Region<'tcx>, ty::RegionVid)>,
}

/// Represents a constraint that influences the inference process.
#[derive(Clone, Copy, PartialEq, Eq, Debug, PartialOrd, Ord)]
pub enum Constraint<'tcx> {
    /// A region variable is a subregion of another.
    VarSubVar(RegionVid, RegionVid),

    /// A concrete region is a subregion of region variable.
    RegSubVar(Region<'tcx>, RegionVid),

    /// A region variable is a subregion of a concrete region. This does not
    /// directly affect inference, but instead is checked after
    /// inference is complete.
    VarSubReg(RegionVid, Region<'tcx>),

    /// A constraint where neither side is a variable. This does not
    /// directly affect inference, but instead is checked after
    /// inference is complete.
    RegSubReg(Region<'tcx>, Region<'tcx>),
}

impl Constraint<'_> {
    pub fn involves_placeholders(&self) -> bool {
        match self {
            Constraint::VarSubVar(_, _) => false,
            Constraint::VarSubReg(_, r) | Constraint::RegSubVar(r, _) => r.is_placeholder(),
            Constraint::RegSubReg(r, s) => r.is_placeholder() || s.is_placeholder(),
        }
    }
}

/// Requires that `region` must be equal to one of the regions in `choice_regions`.
/// We often denote this using the syntax:
///
/// ```
/// R0 member of [O1..On]
/// ```
#[derive(Debug, Clone, HashStable, TypeFoldable, Lift)]
pub struct MemberConstraint<'tcx> {
    /// The `DefId` of the opaque type causing this constraint: used for error reporting.
    pub opaque_type_def_id: DefId,

    /// The span where the hidden type was instantiated.
    pub definition_span: Span,

    /// The hidden type in which `member_region` appears: used for error reporting.
    pub hidden_ty: Ty<'tcx>,

    /// The region `R0`.
    pub member_region: Region<'tcx>,

    /// The options `O1..On`.
    pub choice_regions: Lrc<Vec<Region<'tcx>>>,
}

/// `VerifyGenericBound(T, _, R, RS)`: the parameter type `T` (or
/// associated type) must outlive the region `R`. `T` is known to
/// outlive `RS`. Therefore, verify that `R <= RS[i]` for some
/// `i`. Inference variables may be involved (but this verification
/// step doesn't influence inference).
#[derive(Debug, Clone)]
pub struct Verify<'tcx> {
    pub kind: GenericKind<'tcx>,
    pub origin: SubregionOrigin<'tcx>,
    pub region: Region<'tcx>,
    pub bound: VerifyBound<'tcx>,
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, TypeFoldable)]
pub enum GenericKind<'tcx> {
    Param(ty::ParamTy),
    Projection(ty::ProjectionTy<'tcx>),
}

/// Describes the things that some `GenericKind` value `G` is known to
/// outlive. Each variant of `VerifyBound` can be thought of as a
/// function:
///
///     fn(min: Region) -> bool { .. }
///
/// where `true` means that the region `min` meets that `G: min`.
/// (False means nothing.)
///
/// So, for example, if we have the type `T` and we have in scope that
/// `T: 'a` and `T: 'b`, then the verify bound might be:
///
///     fn(min: Region) -> bool {
///        ('a: min) || ('b: min)
///     }
///
/// This is described with a `AnyRegion('a, 'b)` node.
#[derive(Debug, Clone)]
pub enum VerifyBound<'tcx> {
    /// Given a kind K and a bound B, expands to a function like the
    /// following, where `G` is the generic for which this verify
    /// bound was created:
    ///
    /// ```rust
    /// fn(min) -> bool {
    ///     if G == K {
    ///         B(min)
    ///     } else {
    ///         false
    ///     }
    /// }
    /// ```
    ///
    /// In other words, if the generic `G` that we are checking is
    /// equal to `K`, then check the associated verify bound
    /// (otherwise, false).
    ///
    /// This is used when we have something in the environment that
    /// may or may not be relevant, depending on the region inference
    /// results. For example, we may have `where <T as
    /// Trait<'a>>::Item: 'b` in our where-clauses. If we are
    /// generating the verify-bound for `<T as Trait<'0>>::Item`, then
    /// this where-clause is only relevant if `'0` winds up inferred
    /// to `'a`.
    ///
    /// So we would compile to a verify-bound like
    ///
    /// ```
    /// IfEq(<T as Trait<'a>>::Item, AnyRegion('a))
    /// ```
    ///
    /// meaning, if the subject G is equal to `<T as Trait<'a>>::Item`
    /// (after inference), and `'a: min`, then `G: min`.
    IfEq(Ty<'tcx>, Box<VerifyBound<'tcx>>),

    /// Given a region `R`, expands to the function:
    ///
    /// ```
    /// fn(min) -> bool {
    ///     R: min
    /// }
    /// ```
    ///
    /// This is used when we can establish that `G: R` -- therefore,
    /// if `R: min`, then by transitivity `G: min`.
    OutlivedBy(Region<'tcx>),

    /// Given a set of bounds `B`, expands to the function:
    ///
    /// ```rust
    /// fn(min) -> bool {
    ///     exists (b in B) { b(min) }
    /// }
    /// ```
    ///
    /// In other words, if we meet some bound in `B`, that suffices.
    /// This is used when all the bounds in `B` are known to apply to `G`.
    AnyBound(Vec<VerifyBound<'tcx>>),

    /// Given a set of bounds `B`, expands to the function:
    ///
    /// ```rust
    /// fn(min) -> bool {
    ///     forall (b in B) { b(min) }
    /// }
    /// ```
    ///
    /// In other words, if we meet *all* bounds in `B`, that suffices.
    /// This is used when *some* bound in `B` is known to suffice, but
    /// we don't know which.
    AllBounds(Vec<VerifyBound<'tcx>>),
}

#[derive(Copy, Clone, PartialEq, Eq, Hash)]
struct TwoRegions<'tcx> {
    a: Region<'tcx>,
    b: Region<'tcx>,
}

#[derive(Copy, Clone, PartialEq)]
enum UndoLog<'tcx> {
    /// We added `RegionVid`.
    AddVar(RegionVid),

    /// We added the given `constraint`.
    AddConstraint(Constraint<'tcx>),

    /// We added the given `verify`.
    AddVerify(usize),

    /// We added the given `given`.
    AddGiven(Region<'tcx>, ty::RegionVid),

    /// We added a GLB/LUB "combination variable".
    AddCombination(CombineMapType, TwoRegions<'tcx>),

    /// During skolemization, we sometimes purge entries from the undo
    /// log in a kind of minisnapshot (unlike other snapshots, this
    /// purging actually takes place *on success*). In that case, we
    /// replace the corresponding entry with `Noop` so as to avoid the
    /// need to do a bunch of swapping. (We can't use `swap_remove` as
    /// the order of the vector is important.)
    Purged,
}

#[derive(Copy, Clone, PartialEq)]
enum CombineMapType {
    Lub,
    Glb,
}

type CombineMap<'tcx> = FxHashMap<TwoRegions<'tcx>, RegionVid>;

#[derive(Debug, Clone, Copy)]
pub struct RegionVariableInfo {
    pub origin: RegionVariableOrigin,
    pub universe: ty::UniverseIndex,
}

pub struct RegionSnapshot {
    length: usize,
    region_snapshot: ut::Snapshot<ut::InPlace<ty::RegionVid>>,
    any_unifications: bool,
}

/// When working with placeholder regions, we often wish to find all of
/// the regions that are either reachable from a placeholder region, or
/// which can reach a placeholder region, or both. We call such regions
/// *tainted* regions. This struct allows you to decide what set of
/// tainted regions you want.
#[derive(Debug)]
pub struct TaintDirections {
    incoming: bool,
    outgoing: bool,
}

impl TaintDirections {
    pub fn incoming() -> Self {
        TaintDirections { incoming: true, outgoing: false }
    }

    pub fn outgoing() -> Self {
        TaintDirections { incoming: false, outgoing: true }
    }

    pub fn both() -> Self {
        TaintDirections { incoming: true, outgoing: true }
    }
}

pub struct ConstraintInfo {}

impl<'tcx> RegionConstraintCollector<'tcx> {
    pub fn new() -> Self {
        Self::default()
    }

    pub fn num_region_vars(&self) -> usize {
        self.var_infos.len()
    }

    pub fn region_constraint_data(&self) -> &RegionConstraintData<'tcx> {
        &self.data
    }

    /// Once all the constraints have been gathered, extract out the final data.
    ///
    /// Not legal during a snapshot.
    pub fn into_infos_and_data(self) -> (VarInfos, RegionConstraintData<'tcx>) {
        assert!(!self.in_snapshot());
        (self.var_infos, self.data)
    }

    /// Takes (and clears) the current set of constraints. Note that
    /// the set of variables remains intact, but all relationships
    /// between them are reset. This is used during NLL checking to
    /// grab the set of constraints that arose from a particular
    /// operation.
    ///
    /// We don't want to leak relationships between variables between
    /// points because just because (say) `r1 == r2` was true at some
    /// point P in the graph doesn't imply that it will be true at
    /// some other point Q, in NLL.
    ///
    /// Not legal during a snapshot.
    pub fn take_and_reset_data(&mut self) -> RegionConstraintData<'tcx> {
        assert!(!self.in_snapshot());

        // If you add a new field to `RegionConstraintCollector`, you
        // should think carefully about whether it needs to be cleared
        // or updated in some way.
        let RegionConstraintCollector {
            var_infos: _,
            data,
            lubs,
            glbs,
            undo_log: _,
            num_open_snapshots: _,
            unification_table,
            any_unifications,
        } = self;

        // Clear the tables of (lubs, glbs), so that we will create
        // fresh regions if we do a LUB operation. As it happens,
        // LUB/GLB are not performed by the MIR type-checker, which is
        // the one that uses this method, but it's good to be correct.
        lubs.clear();
        glbs.clear();

        // Clear all unifications and recreate the variables a "now
        // un-unified" state. Note that when we unify `a` and `b`, we
        // also insert `a <= b` and a `b <= a` edges, so the
        // `RegionConstraintData` contains the relationship here.
        if *any_unifications {
            unification_table.reset_unifications(|vid| unify_key::RegionVidKey { min_vid: vid });
            *any_unifications = false;
        }

        mem::take(data)
    }

    pub fn data(&self) -> &RegionConstraintData<'tcx> {
        &self.data
    }

    fn in_snapshot(&self) -> bool {
        self.num_open_snapshots > 0
    }

    pub fn start_snapshot(&mut self) -> RegionSnapshot {
        let length = self.undo_log.len();
        debug!("RegionConstraintCollector: start_snapshot({})", length);
        self.num_open_snapshots += 1;
        RegionSnapshot {
            length,
            region_snapshot: self.unification_table.snapshot(),
            any_unifications: self.any_unifications,
        }
    }

    fn assert_open_snapshot(&self, snapshot: &RegionSnapshot) {
        assert!(self.undo_log.len() >= snapshot.length);
        assert!(self.num_open_snapshots > 0);
    }

    pub fn commit(&mut self, snapshot: RegionSnapshot) {
        debug!("RegionConstraintCollector: commit({})", snapshot.length);
        self.assert_open_snapshot(&snapshot);

        if self.num_open_snapshots == 1 {
            // The root snapshot. It's safe to clear the undo log because
            // there's no snapshot further out that we might need to roll back
            // to.
            assert!(snapshot.length == 0);
            self.undo_log.clear();
        }

        self.num_open_snapshots -= 1;

        self.unification_table.commit(snapshot.region_snapshot);
    }

    pub fn rollback_to(&mut self, snapshot: RegionSnapshot) {
        debug!("RegionConstraintCollector: rollback_to({:?})", snapshot);
        self.assert_open_snapshot(&snapshot);

        while self.undo_log.len() > snapshot.length {
            let undo_entry = self.undo_log.pop().unwrap();
            self.rollback_undo_entry(undo_entry);
        }

        self.num_open_snapshots -= 1;

        self.unification_table.rollback_to(snapshot.region_snapshot);
        self.any_unifications = snapshot.any_unifications;
    }

    fn rollback_undo_entry(&mut self, undo_entry: UndoLog<'tcx>) {
        match undo_entry {
            Purged => {
                // nothing to do here
            }
            AddVar(vid) => {
                self.var_infos.pop().unwrap();
                assert_eq!(self.var_infos.len(), vid.index() as usize);
            }
            AddConstraint(ref constraint) => {
                self.data.constraints.remove(constraint);
            }
            AddVerify(index) => {
                self.data.verifys.pop();
                assert_eq!(self.data.verifys.len(), index);
            }
            AddGiven(sub, sup) => {
                self.data.givens.remove(&(sub, sup));
            }
            AddCombination(Glb, ref regions) => {
                self.glbs.remove(regions);
            }
            AddCombination(Lub, ref regions) => {
                self.lubs.remove(regions);
            }
        }
    }

    pub fn new_region_var(
        &mut self,
        universe: ty::UniverseIndex,
        origin: RegionVariableOrigin,
    ) -> RegionVid {
        let vid = self.var_infos.push(RegionVariableInfo { origin, universe });

        let u_vid = self.unification_table.new_key(unify_key::RegionVidKey { min_vid: vid });
        assert_eq!(vid, u_vid);
        if self.in_snapshot() {
            self.undo_log.push(AddVar(vid));
        }
        debug!("created new region variable {:?} in {:?} with origin {:?}", vid, universe, origin);
        return vid;
    }

    /// Returns the universe for the given variable.
    pub fn var_universe(&self, vid: RegionVid) -> ty::UniverseIndex {
        self.var_infos[vid].universe
    }

    /// Returns the origin for the given variable.
    pub fn var_origin(&self, vid: RegionVid) -> RegionVariableOrigin {
        self.var_infos[vid].origin
    }

    /// Removes all the edges to/from the placeholder regions that are
    /// in `skols`. This is used after a higher-ranked operation
    /// completes to remove all trace of the placeholder regions
    /// created in that time.
    pub fn pop_placeholders(&mut self, placeholders: &FxHashSet<ty::Region<'tcx>>) {
        debug!("pop_placeholders(placeholders={:?})", placeholders);

        assert!(self.in_snapshot());

        let constraints_to_kill: Vec<usize> = self
            .undo_log
            .iter()
            .enumerate()
            .rev()
            .filter(|&(_, undo_entry)| kill_constraint(placeholders, undo_entry))
            .map(|(index, _)| index)
            .collect();

        for index in constraints_to_kill {
            let undo_entry = mem::replace(&mut self.undo_log[index], Purged);
            self.rollback_undo_entry(undo_entry);
        }

        return;

        fn kill_constraint<'tcx>(
            placeholders: &FxHashSet<ty::Region<'tcx>>,
            undo_entry: &UndoLog<'tcx>,
        ) -> bool {
            match undo_entry {
                &AddConstraint(Constraint::VarSubVar(..)) => false,
                &AddConstraint(Constraint::RegSubVar(a, _)) => placeholders.contains(&a),
                &AddConstraint(Constraint::VarSubReg(_, b)) => placeholders.contains(&b),
                &AddConstraint(Constraint::RegSubReg(a, b)) => {
                    placeholders.contains(&a) || placeholders.contains(&b)
                }
                &AddGiven(..) => false,
                &AddVerify(_) => false,
                &AddCombination(_, ref two_regions) => {
                    placeholders.contains(&two_regions.a) || placeholders.contains(&two_regions.b)
                }
                &AddVar(..) | &Purged => false,
            }
        }
    }

    fn add_constraint(&mut self, constraint: Constraint<'tcx>, origin: SubregionOrigin<'tcx>) {
        // cannot add constraints once regions are resolved
        debug!("RegionConstraintCollector: add_constraint({:?})", constraint);

        // never overwrite an existing (constraint, origin) - only insert one if it isn't
        // present in the map yet. This prevents origins from outside the snapshot being
        // replaced with "less informative" origins e.g., during calls to `can_eq`
        let in_snapshot = self.in_snapshot();
        let undo_log = &mut self.undo_log;
        self.data.constraints.entry(constraint).or_insert_with(|| {
            if in_snapshot {
                undo_log.push(AddConstraint(constraint));
            }
            origin
        });
    }

    fn add_verify(&mut self, verify: Verify<'tcx>) {
        // cannot add verifys once regions are resolved
        debug!("RegionConstraintCollector: add_verify({:?})", verify);

        // skip no-op cases known to be satisfied
        if let VerifyBound::AllBounds(ref bs) = verify.bound {
            if bs.len() == 0 {
                return;
            }
        }

        let index = self.data.verifys.len();
        self.data.verifys.push(verify);
        if self.in_snapshot() {
            self.undo_log.push(AddVerify(index));
        }
    }

    pub fn add_given(&mut self, sub: Region<'tcx>, sup: ty::RegionVid) {
        // cannot add givens once regions are resolved
        if self.data.givens.insert((sub, sup)) {
            debug!("add_given({:?} <= {:?})", sub, sup);

            if self.in_snapshot() {
                self.undo_log.push(AddGiven(sub, sup));
            }
        }
    }

    pub fn make_eqregion(
        &mut self,
        origin: SubregionOrigin<'tcx>,
        sub: Region<'tcx>,
        sup: Region<'tcx>,
    ) {
        if sub != sup {
            // Eventually, it would be nice to add direct support for
            // equating regions.
            self.make_subregion(origin.clone(), sub, sup);
            self.make_subregion(origin, sup, sub);

            if let (ty::ReVar(sub), ty::ReVar(sup)) = (*sub, *sup) {
                debug!("make_eqregion: uniying {:?} with {:?}", sub, sup);
                self.unification_table.union(sub, sup);
                self.any_unifications = true;
            }
        }
    }

    pub fn member_constraint(
        &mut self,
        opaque_type_def_id: DefId,
        definition_span: Span,
        hidden_ty: Ty<'tcx>,
        member_region: ty::Region<'tcx>,
        choice_regions: &Lrc<Vec<ty::Region<'tcx>>>,
    ) {
        debug!("member_constraint({:?} in {:#?})", member_region, choice_regions);

        if choice_regions.iter().any(|&r| r == member_region) {
            return;
        }

        self.data.member_constraints.push(MemberConstraint {
            opaque_type_def_id,
            definition_span,
            hidden_ty,
            member_region,
            choice_regions: choice_regions.clone(),
        });
    }

    pub fn make_subregion(
        &mut self,
        origin: SubregionOrigin<'tcx>,
        sub: Region<'tcx>,
        sup: Region<'tcx>,
    ) {
        // cannot add constraints once regions are resolved
        debug!(
            "RegionConstraintCollector: make_subregion({:?}, {:?}) due to {:?}",
            sub, sup, origin
        );

        match (sub, sup) {
            (&ReLateBound(..), _) | (_, &ReLateBound(..)) => {
                span_bug!(origin.span(), "cannot relate bound region: {:?} <= {:?}", sub, sup);
            }
            (_, &ReStatic) => {
                // all regions are subregions of static, so we can ignore this
            }
            (&ReVar(sub_id), &ReVar(sup_id)) => {
                self.add_constraint(Constraint::VarSubVar(sub_id, sup_id), origin);
            }
            (_, &ReVar(sup_id)) => {
                self.add_constraint(Constraint::RegSubVar(sub, sup_id), origin);
            }
            (&ReVar(sub_id), _) => {
                self.add_constraint(Constraint::VarSubReg(sub_id, sup), origin);
            }
            _ => {
                self.add_constraint(Constraint::RegSubReg(sub, sup), origin);
            }
        }
    }

    /// See [`Verify::VerifyGenericBound`].
    pub fn verify_generic_bound(
        &mut self,
        origin: SubregionOrigin<'tcx>,
        kind: GenericKind<'tcx>,
        sub: Region<'tcx>,
        bound: VerifyBound<'tcx>,
    ) {
        self.add_verify(Verify { kind, origin, region: sub, bound });
    }

    pub fn lub_regions(
        &mut self,
        tcx: TyCtxt<'tcx>,
        origin: SubregionOrigin<'tcx>,
        a: Region<'tcx>,
        b: Region<'tcx>,
    ) -> Region<'tcx> {
        // cannot add constraints once regions are resolved
        debug!("RegionConstraintCollector: lub_regions({:?}, {:?})", a, b);
        match (a, b) {
            (r @ &ReStatic, _) | (_, r @ &ReStatic) => {
                r // nothing lives longer than static
            }

            _ if a == b => {
                a // LUB(a,a) = a
            }

            _ => self.combine_vars(tcx, Lub, a, b, origin),
        }
    }

    pub fn glb_regions(
        &mut self,
        tcx: TyCtxt<'tcx>,
        origin: SubregionOrigin<'tcx>,
        a: Region<'tcx>,
        b: Region<'tcx>,
    ) -> Region<'tcx> {
        // cannot add constraints once regions are resolved
        debug!("RegionConstraintCollector: glb_regions({:?}, {:?})", a, b);
        match (a, b) {
            (&ReStatic, r) | (r, &ReStatic) => {
                r // static lives longer than everything else
            }

            _ if a == b => {
                a // GLB(a,a) = a
            }

            _ => self.combine_vars(tcx, Glb, a, b, origin),
        }
    }

    pub fn opportunistic_resolve_var(
        &mut self,
        tcx: TyCtxt<'tcx>,
        rid: RegionVid,
    ) -> ty::Region<'tcx> {
        let vid = self.unification_table.probe_value(rid).min_vid;
        tcx.mk_region(ty::ReVar(vid))
    }

    fn combine_map(&mut self, t: CombineMapType) -> &mut CombineMap<'tcx> {
        match t {
            Glb => &mut self.glbs,
            Lub => &mut self.lubs,
        }
    }

    fn combine_vars(
        &mut self,
        tcx: TyCtxt<'tcx>,
        t: CombineMapType,
        a: Region<'tcx>,
        b: Region<'tcx>,
        origin: SubregionOrigin<'tcx>,
    ) -> Region<'tcx> {
        let vars = TwoRegions { a: a, b: b };
        if let Some(&c) = self.combine_map(t).get(&vars) {
            return tcx.mk_region(ReVar(c));
        }
        let a_universe = self.universe(a);
        let b_universe = self.universe(b);
        let c_universe = cmp::max(a_universe, b_universe);
        let c = self.new_region_var(c_universe, MiscVariable(origin.span()));
        self.combine_map(t).insert(vars, c);
        if self.in_snapshot() {
            self.undo_log.push(AddCombination(t, vars));
        }
        let new_r = tcx.mk_region(ReVar(c));
        for &old_r in &[a, b] {
            match t {
                Glb => self.make_subregion(origin.clone(), new_r, old_r),
                Lub => self.make_subregion(origin.clone(), old_r, new_r),
            }
        }
        debug!("combine_vars() c={:?}", c);
        new_r
    }

    pub fn universe(&self, region: Region<'tcx>) -> ty::UniverseIndex {
        match *region {
            ty::ReScope(..)
            | ty::ReStatic
            | ty::ReEmpty
            | ty::ReErased
            | ty::ReFree(..)
            | ty::ReEarlyBound(..) => ty::UniverseIndex::ROOT,
            ty::RePlaceholder(placeholder) => placeholder.universe,
            ty::ReClosureBound(vid) | ty::ReVar(vid) => self.var_universe(vid),
            ty::ReLateBound(..) => bug!("universe(): encountered bound region {:?}", region),
        }
    }

    pub fn vars_since_snapshot(
        &self,
        mark: &RegionSnapshot,
    ) -> (Range<RegionVid>, Vec<RegionVariableOrigin>) {
        let range = self.unification_table.vars_since_snapshot(&mark.region_snapshot);
        (
            range.clone(),
            (range.start.index()..range.end.index())
                .map(|index| self.var_infos[ty::RegionVid::from(index)].origin.clone())
                .collect(),
        )
    }

    /// See [`RegionInference::region_constraints_added_in_snapshot`].
    pub fn region_constraints_added_in_snapshot(&self, mark: &RegionSnapshot) -> Option<bool> {
        self.undo_log[mark.length..]
            .iter()
            .map(|&elt| match elt {
                AddConstraint(constraint) => Some(constraint.involves_placeholders()),
                _ => None,
            })
            .max()
            .unwrap_or(None)
    }
}

impl fmt::Debug for RegionSnapshot {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "RegionSnapshot(length={})", self.length)
    }
}

impl<'tcx> fmt::Debug for GenericKind<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            GenericKind::Param(ref p) => write!(f, "{:?}", p),
            GenericKind::Projection(ref p) => write!(f, "{:?}", p),
        }
    }
}

impl<'tcx> fmt::Display for GenericKind<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            GenericKind::Param(ref p) => write!(f, "{}", p),
            GenericKind::Projection(ref p) => write!(f, "{}", p),
        }
    }
}

impl<'tcx> GenericKind<'tcx> {
    pub fn to_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match *self {
            GenericKind::Param(ref p) => p.to_ty(tcx),
            GenericKind::Projection(ref p) => tcx.mk_projection(p.item_def_id, p.substs),
        }
    }
}

impl<'tcx> VerifyBound<'tcx> {
    pub fn must_hold(&self) -> bool {
        match self {
            VerifyBound::IfEq(..) => false,
            VerifyBound::OutlivedBy(ty::ReStatic) => true,
            VerifyBound::OutlivedBy(_) => false,
            VerifyBound::AnyBound(bs) => bs.iter().any(|b| b.must_hold()),
            VerifyBound::AllBounds(bs) => bs.iter().all(|b| b.must_hold()),
        }
    }

    pub fn cannot_hold(&self) -> bool {
        match self {
            VerifyBound::IfEq(_, b) => b.cannot_hold(),
            VerifyBound::OutlivedBy(ty::ReEmpty) => true,
            VerifyBound::OutlivedBy(_) => false,
            VerifyBound::AnyBound(bs) => bs.iter().all(|b| b.cannot_hold()),
            VerifyBound::AllBounds(bs) => bs.iter().any(|b| b.cannot_hold()),
        }
    }

    pub fn or(self, vb: VerifyBound<'tcx>) -> VerifyBound<'tcx> {
        if self.must_hold() || vb.cannot_hold() {
            self
        } else if self.cannot_hold() || vb.must_hold() {
            vb
        } else {
            VerifyBound::AnyBound(vec![self, vb])
        }
    }

    pub fn and(self, vb: VerifyBound<'tcx>) -> VerifyBound<'tcx> {
        if self.must_hold() && vb.must_hold() {
            self
        } else if self.cannot_hold() && vb.cannot_hold() {
            self
        } else {
            VerifyBound::AllBounds(vec![self, vb])
        }
    }
}

impl<'tcx> RegionConstraintData<'tcx> {
    /// Returns `true` if this region constraint data contains no constraints, and `false`
    /// otherwise.
    pub fn is_empty(&self) -> bool {
        let RegionConstraintData { constraints, member_constraints, verifys, givens } = self;
        constraints.is_empty()
            && member_constraints.is_empty()
            && verifys.is_empty()
            && givens.is_empty()
    }
}