[][src]Struct rustc_mir::interpret::eval_context::InterpCx

pub struct InterpCx<'mir, 'tcx, M: Machine<'mir, 'tcx>> {
    pub machine: M,
    pub tcx: TyCtxtAt<'tcx>,
    pub(crate) param_env: ParamEnv<'tcx>,
    pub memory: Memory<'mir, 'tcx, M>,
    pub(super) vtables: FxHashMap<(Ty<'tcx>, Option<PolyExistentialTraitRef<'tcx>>), Pointer<M::PointerTag>>,
}

Fields

machine: M

Stores the Machine instance.

Note: the stack is provided by the machine.

tcx: TyCtxtAt<'tcx>

The results of the type checker, from rustc. The span in this is the "root" of the evaluation, i.e., the const we are evaluating (if this is CTFE).

param_env: ParamEnv<'tcx>

Bounds in scope for polymorphic evaluations.

memory: Memory<'mir, 'tcx, M>

The virtual memory system.

vtables: FxHashMap<(Ty<'tcx>, Option<PolyExistentialTraitRef<'tcx>>), Pointer<M::PointerTag>>

A cache for deduplicating vtables

Implementations

impl<'mir, 'tcx> InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>[src]

fn hook_panic_fn(
    &mut self,
    instance: Instance<'tcx>,
    args: &[OpTy<'tcx>]
) -> InterpResult<'tcx>
[src]

"Intercept" a function call to a panic-related function because we have something special to do for it. If this returns successfully (Ok), the function should just be evaluated normally.

impl<'mir, 'tcx: 'mir> InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>[src]

fn guaranteed_eq(&mut self, a: Scalar, b: Scalar) -> bool[src]

fn guaranteed_ne(&mut self, a: Scalar, b: Scalar) -> bool[src]

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

pub fn cast(
    &mut self,
    src: OpTy<'tcx, M::PointerTag>,
    cast_kind: CastKind,
    cast_ty: Ty<'tcx>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

fn misc_cast(
    &self,
    src: ImmTy<'tcx, M::PointerTag>,
    cast_ty: Ty<'tcx>
) -> InterpResult<'tcx, Immediate<M::PointerTag>>
[src]

pub(super) fn cast_from_scalar(
    &self,
    v: u128,
    src_layout: TyAndLayout<'tcx>,
    cast_ty: Ty<'tcx>
) -> Scalar<M::PointerTag>
[src]

fn cast_from_float<F>(&self, f: F, dest_ty: Ty<'tcx>) -> Scalar<M::PointerTag> where
    F: Float + Into<Scalar<M::PointerTag>> + FloatConvert<Single> + FloatConvert<Double>, 
[src]

fn unsize_into_ptr(
    &mut self,
    src: OpTy<'tcx, M::PointerTag>,
    dest: PlaceTy<'tcx, M::PointerTag>,
    source_ty: Ty<'tcx>,
    cast_ty: Ty<'tcx>
) -> InterpResult<'tcx>
[src]

fn unsize_into(
    &mut self,
    src: OpTy<'tcx, M::PointerTag>,
    cast_ty: TyAndLayout<'tcx>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

pub fn new(
    tcx: TyCtxt<'tcx>,
    root_span: Span,
    param_env: ParamEnv<'tcx>,
    machine: M,
    memory_extra: M::MemoryExtra
) -> Self
[src]

pub fn cur_span(&self) -> Span[src]

pub fn force_ptr(
    &self,
    scalar: Scalar<M::PointerTag>
) -> InterpResult<'tcx, Pointer<M::PointerTag>>
[src]

pub fn force_bits(
    &self,
    scalar: Scalar<M::PointerTag>,
    size: Size
) -> InterpResult<'tcx, u128>
[src]

pub fn global_base_pointer(
    &self,
    ptr: Pointer
) -> InterpResult<'tcx, Pointer<M::PointerTag>>
[src]

Call this to turn untagged "global" pointers (obtained via tcx) into the machine pointer to the allocation. Must never be used for any other pointers, nor for TLS statics.

Using the resulting pointer represents a direct access to that memory (e.g. by directly using a static), as opposed to access through a pointer that was created by the program.

This function can fail only if ptr points to an extern static.

pub(crate) fn stack(&self) -> &[Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>][src]

pub(crate) fn stack_mut(
    &mut self
) -> &mut Vec<Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>>
[src]

pub fn frame_idx(&self) -> usize[src]

pub fn frame(&self) -> &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>[src]

pub fn frame_mut(
    &mut self
) -> &mut Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>
[src]

pub(super) fn body(&self) -> &'mir Body<'tcx>[src]

pub fn sign_extend(&self, value: u128, ty: TyAndLayout<'_>) -> u128[src]

pub fn truncate(&self, value: u128, ty: TyAndLayout<'_>) -> u128[src]

pub fn type_is_sized(&self, ty: Ty<'tcx>) -> bool[src]

pub fn type_is_freeze(&self, ty: Ty<'tcx>) -> bool[src]

pub fn load_mir(
    &self,
    instance: InstanceDef<'tcx>,
    promoted: Option<Promoted>
) -> InterpResult<'tcx, &'tcx Body<'tcx>>
[src]

pub(super) fn subst_from_current_frame_and_normalize_erasing_regions<T: TypeFoldable<'tcx>>(
    &self,
    value: T
) -> T
[src]

Call this on things you got out of the MIR (so it is as generic as the current stack frame), to bring it into the proper environment for this interpreter.

pub(super) fn subst_from_frame_and_normalize_erasing_regions<T: TypeFoldable<'tcx>>(
    &self,
    frame: &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
    value: T
) -> T
[src]

Call this on things you got out of the MIR (so it is as generic as the provided stack frame), to bring it into the proper environment for this interpreter.

pub(super) fn resolve(
    &self,
    def: WithOptConstParam<DefId>,
    substs: SubstsRef<'tcx>
) -> InterpResult<'tcx, Instance<'tcx>>
[src]

The substs are assumed to already be in our interpreter "universe" (param_env).

pub fn layout_of_local(
    &self,
    frame: &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
    local: Local,
    layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, TyAndLayout<'tcx>>
[src]

pub(super) fn size_and_align_of(
    &self,
    metadata: MemPlaceMeta<M::PointerTag>,
    layout: TyAndLayout<'tcx>
) -> InterpResult<'tcx, Option<(Size, Align)>>
[src]

Returns the actual dynamic size and alignment of the place at the given type. Only the "meta" (metadata) part of the place matters. This can fail to provide an answer for extern types.

pub fn size_and_align_of_mplace(
    &self,
    mplace: MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Option<(Size, Align)>>
[src]

pub fn push_stack_frame(
    &mut self,
    instance: Instance<'tcx>,
    body: &'mir Body<'tcx>,
    return_place: Option<PlaceTy<'tcx, M::PointerTag>>,
    return_to_block: StackPopCleanup
) -> InterpResult<'tcx>
[src]

pub fn go_to_block(&mut self, target: BasicBlock)[src]

Jump to the given block.

pub fn return_to_block(
    &mut self,
    target: Option<BasicBlock>
) -> InterpResult<'tcx>
[src]

Return to the given target basic block. Do not use for unwinding! Use unwind_to_block instead.

If target is None, that indicates the function cannot return, so we raise UB.

pub fn unwind_to_block(&mut self, target: Option<BasicBlock>)[src]

Unwind to the given target basic block. Do not use for returning! Use return_to_block instead.

If target is None, that indicates the function does not need cleanup during unwinding, and we will just keep propagating that upwards.

pub(super) fn pop_stack_frame(&mut self, unwinding: bool) -> InterpResult<'tcx>[src]

Pops the current frame from the stack, deallocating the memory for allocated locals.

If unwinding is false, then we are performing a normal return from a function. In this case, we jump back into the frame of the caller, and continue execution as normal.

If unwinding is true, then we are in the middle of a panic, and need to unwind this frame. In this case, we jump to the cleanup block for the function, which is responsible for running Drop impls for any locals that have been initialized at this point. The cleanup block ends with a special Resume terminator, which will cause us to continue unwinding.

pub fn storage_live(&mut self, local: Local) -> InterpResult<'tcx>[src]

Mark a storage as live, killing the previous content.

pub fn storage_dead(&mut self, local: Local) -> InterpResult<'tcx>[src]

fn deallocate_local(
    &mut self,
    local: LocalValue<M::PointerTag>
) -> InterpResult<'tcx>
[src]

pub fn eval_to_allocation(
    &self,
    gid: GlobalId<'tcx>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

#[must_use]pub fn dump_place<'a>(
    &'a self,
    place: Place<M::PointerTag>
) -> PlacePrinter<'a, 'mir, 'tcx, M>
[src]

#[must_use]pub fn generate_stacktrace(&self) -> Vec<FrameInfo<'tcx>>[src]

impl<'mir, 'tcx: 'mir, M: CompileTimeMachine<'mir, 'tcx, !>> InterpCx<'mir, 'tcx, M>[src]

pub(crate) fn intern_with_temp_alloc(
    &mut self,
    layout: TyAndLayout<'tcx>,
    f: impl FnOnce(&mut InterpCx<'mir, 'tcx, M>, MPlaceTy<'tcx, M::PointerTag>) -> InterpResult<'tcx, ()>
) -> InterpResult<'tcx, &'tcx Allocation>
[src]

A helper function that allocates memory for the layout given and gives you access to mutate it. Once your own mutation code is done, the backing Allocation is removed from the current Memory and returned.

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

pub(crate) fn find_closest_untracked_caller_location(&self) -> Span[src]

Walks up the callstack from the intrinsic's callsite, searching for the first callsite in a frame which is not #[track_caller].

pub(crate) fn alloc_caller_location(
    &mut self,
    filename: Symbol,
    line: u32,
    col: u32
) -> MPlaceTy<'tcx, M::PointerTag>
[src]

Allocate a const core::panic::Location with the provided filename and line/column numbers.

pub(crate) fn location_triple_for_span(&self, span: Span) -> (Symbol, u32, u32)[src]

pub fn alloc_caller_location_for_span(
    &mut self,
    span: Span
) -> MPlaceTy<'tcx, M::PointerTag>
[src]

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

pub fn emulate_intrinsic(
    &mut self,
    instance: Instance<'tcx>,
    args: &[OpTy<'tcx, M::PointerTag>],
    ret: Option<(PlaceTy<'tcx, M::PointerTag>, BasicBlock)>
) -> InterpResult<'tcx, bool>
[src]

Returns true if emulation happened. Here we implement the intrinsics that are common to all Miri instances; individual machines can add their own intrinsic handling.

pub fn exact_div(
    &mut self,
    a: ImmTy<'tcx, M::PointerTag>,
    b: ImmTy<'tcx, M::PointerTag>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

pub fn ptr_offset_inbounds(
    &self,
    ptr: Scalar<M::PointerTag>,
    pointee_ty: Ty<'tcx>,
    offset_count: i64
) -> InterpResult<'tcx, Scalar<M::PointerTag>>
[src]

Offsets a pointer by some multiple of its type, returning an error if the pointer leaves its allocation. For integer pointers, we consider each of them their own tiny allocation of size 0, so offset-by-0 (and only 0) is okay -- except that NULL cannot be offset by any value.

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

pub fn force_op_ptr(
    &self,
    op: OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
[src]

Normalice place.ptr to a Pointer if this is a place and not a ZST. Can be helpful to avoid lots of force_ptr calls later, if this place is used a lot.

fn try_read_immediate_from_mplace(
    &self,
    mplace: MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Option<ImmTy<'tcx, M::PointerTag>>>
[src]

Try reading an immediate in memory; this is interesting particularly for ScalarPair. Returns None if the layout does not permit loading this as a value.

pub(crate) fn try_read_immediate(
    &self,
    src: OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Result<ImmTy<'tcx, M::PointerTag>, MPlaceTy<'tcx, M::PointerTag>>>
[src]

Try returning an immediate for the operand. If the layout does not permit loading this as an immediate, return where in memory we can find the data. Note that for a given layout, this operation will either always fail or always succeed! Whether it succeeds depends on whether the layout can be represented in a Immediate, not on which data is stored there currently.

pub fn read_immediate(
    &self,
    op: OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>>
[src]

Read an immediate from a place, asserting that that is possible with the given layout.

pub fn read_scalar(
    &self,
    op: OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ScalarMaybeUninit<M::PointerTag>>
[src]

Read a scalar from a place

pub fn read_str(
    &self,
    mplace: MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, &str>
[src]

pub fn operand_field(
    &self,
    op: OpTy<'tcx, M::PointerTag>,
    field: usize
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
[src]

Projection functions

pub fn operand_index(
    &self,
    op: OpTy<'tcx, M::PointerTag>,
    index: u64
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
[src]

pub fn operand_downcast(
    &self,
    op: OpTy<'tcx, M::PointerTag>,
    variant: VariantIdx
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
[src]

pub fn operand_projection(
    &self,
    base: OpTy<'tcx, M::PointerTag>,
    proj_elem: PlaceElem<'tcx>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
[src]

pub fn access_local(
    &self,
    frame: &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
    local: Local,
    layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
[src]

Read from a local. Will not actually access the local if reading from a ZST. Will not access memory, instead an indirect Operand is returned.

This is public because it is used by priroda to get an OpTy from a local

pub fn place_to_op(
    &self,
    place: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
[src]

Every place can be read from, so we can turn them into an operand. This will definitely return Indirect if the place is a Ptr, i.e., this will never actually read from memory.

pub fn eval_place_to_op(
    &self,
    place: Place<'tcx>,
    layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
[src]

pub fn eval_operand(
    &self,
    mir_op: &Operand<'tcx>,
    layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
[src]

Evaluate the operand, returning a place where you can then find the data. If you already know the layout, you can save two table lookups by passing it in here.

pub(super) fn eval_operands(
    &self,
    ops: &[Operand<'tcx>]
) -> InterpResult<'tcx, Vec<OpTy<'tcx, M::PointerTag>>>
[src]

Evaluate a bunch of operands at once

pub(crate) fn const_to_op(
    &self,
    val: &Const<'tcx>,
    layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
[src]

The val and layout are assumed to already be in our interpreter "universe" (param_env).

pub fn read_discriminant(
    &self,
    op: OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, VariantIdx)>
[src]

Read discriminant, return the runtime value as well as the variant index.

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

pub fn binop_with_overflow(
    &mut self,
    op: BinOp,
    left: ImmTy<'tcx, M::PointerTag>,
    right: ImmTy<'tcx, M::PointerTag>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Applies the binary operation op to the two operands and writes a tuple of the result and a boolean signifying the potential overflow to the destination.

pub fn binop_ignore_overflow(
    &mut self,
    op: BinOp,
    left: ImmTy<'tcx, M::PointerTag>,
    right: ImmTy<'tcx, M::PointerTag>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Applies the binary operation op to the arguments and writes the result to the destination.

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

fn binary_char_op(
    &self,
    bin_op: BinOp,
    l: char,
    r: char
) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>)
[src]

fn binary_bool_op(
    &self,
    bin_op: BinOp,
    l: bool,
    r: bool
) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>)
[src]

fn binary_float_op<F: Float + Into<Scalar<M::PointerTag>>>(
    &self,
    bin_op: BinOp,
    ty: Ty<'tcx>,
    l: F,
    r: F
) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>)
[src]

fn binary_int_op(
    &self,
    bin_op: BinOp,
    l: u128,
    left_layout: TyAndLayout<'tcx>,
    r: u128,
    right_layout: TyAndLayout<'tcx>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)>
[src]

pub fn overflowing_binary_op(
    &self,
    bin_op: BinOp,
    left: ImmTy<'tcx, M::PointerTag>,
    right: ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)>
[src]

Returns the result of the specified operation, whether it overflowed, and the result type.

pub fn binary_op(
    &self,
    bin_op: BinOp,
    left: ImmTy<'tcx, M::PointerTag>,
    right: ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>>
[src]

Typed version of overflowing_binary_op, returning an ImmTy. Also ignores overflows.

pub fn overflowing_unary_op(
    &self,
    un_op: UnOp,
    val: ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)>
[src]

Returns the result of the specified operation, whether it overflowed, and the result type.

pub fn unary_op(
    &self,
    un_op: UnOp,
    val: ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>>
[src]

impl<'mir, 'tcx: 'mir, Tag, M> InterpCx<'mir, 'tcx, M> where
    Tag: Debug + Copy + Eq + Hash + 'static,
    M: Machine<'mir, 'tcx, PointerTag = Tag>,
    M::MemoryMap: AllocMap<AllocId, (MemoryKind<M::MemoryKind>, Allocation<Tag, M::AllocExtra>)>,
    M::AllocExtra: AllocationExtra<Tag>, 
[src]

pub fn ref_to_mplace(
    &self,
    val: ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

Take a value, which represents a (thin or wide) reference, and make it a place. Alignment is just based on the type. This is the inverse of MemPlace::to_ref().

Only call this if you are sure the place is "valid" (aligned and inbounds), or do not want to ever use the place for memory access! Generally prefer deref_operand.

pub fn deref_operand(
    &self,
    src: OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

Take an operand, representing a pointer, and dereference it to a place -- that will always be a MemPlace. Lives in place.rs because it creates a place.

pub(super) fn check_mplace_access(
    &self,
    place: MPlaceTy<'tcx, M::PointerTag>,
    size: Option<Size>
) -> InterpResult<'tcx, Option<Pointer<M::PointerTag>>>
[src]

Check if the given place is good for memory access with the given size, falling back to the layout's size if None (in the latter case, this must be a statically sized type).

On success, returns None for zero-sized accesses (where nothing else is left to do) and a Pointer to use for the actual access otherwise.

pub fn mplace_access_checked(
    &self,
    mut place: MPlaceTy<'tcx, M::PointerTag>,
    force_align: Option<Align>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

Return the "access-checked" version of this MPlace, where for non-ZST this is definitely a Pointer.

force_align must only be used when correct alignment does not matter, like in Stacked Borrows.

pub(super) fn force_mplace_ptr(
    &self,
    mut place: MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

Force place.ptr to a Pointer. Can be helpful to avoid lots of force_ptr calls later, if this place is used a lot.

pub fn mplace_field(
    &self,
    base: MPlaceTy<'tcx, M::PointerTag>,
    field: usize
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

Offset a pointer to project to a field of a struct/union. Unlike place_field, this is always possible without allocating, so it can take &self. Also return the field's layout. This supports both struct and array fields.

This also works for arrays, but then the usize index type is restricting. For indexing into arrays, use mplace_index.

pub fn mplace_index(
    &self,
    base: MPlaceTy<'tcx, M::PointerTag>,
    index: u64
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

Index into an array.

pub(super) fn mplace_array_fields(
    &self,
    base: MPlaceTy<'tcx, Tag>
) -> InterpResult<'tcx, impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>> + 'tcx>
[src]

fn mplace_subslice(
    &self,
    base: MPlaceTy<'tcx, M::PointerTag>,
    from: u64,
    to: u64,
    from_end: bool
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

pub(super) fn mplace_downcast(
    &self,
    base: MPlaceTy<'tcx, M::PointerTag>,
    variant: VariantIdx
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

pub(super) fn mplace_projection(
    &self,
    base: MPlaceTy<'tcx, M::PointerTag>,
    proj_elem: PlaceElem<'tcx>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

Project into an mplace

pub fn place_field(
    &mut self,
    base: PlaceTy<'tcx, M::PointerTag>,
    field: usize
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
[src]

Gets the place of a field inside the place, and also the field's type. Just a convenience function, but used quite a bit. This is the only projection that might have a side-effect: We cannot project into the field of a local ScalarPair, we have to first allocate it.

pub fn place_index(
    &mut self,
    base: PlaceTy<'tcx, M::PointerTag>,
    index: u64
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
[src]

pub fn place_downcast(
    &self,
    base: PlaceTy<'tcx, M::PointerTag>,
    variant: VariantIdx
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
[src]

pub fn place_projection(
    &mut self,
    base: PlaceTy<'tcx, M::PointerTag>,
    &proj_elem: &ProjectionElem<Local, Ty<'tcx>>
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
[src]

Projects into a place.

pub fn eval_place(
    &mut self,
    place: Place<'tcx>
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
[src]

Computes a place. You should only use this if you intend to write into this place; for reading, a more efficient alternative is eval_place_for_read.

pub fn write_scalar(
    &mut self,
    val: impl Into<ScalarMaybeUninit<M::PointerTag>>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Write a scalar to a place

pub fn write_immediate(
    &mut self,
    src: Immediate<M::PointerTag>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Write an immediate to a place

pub fn write_immediate_to_mplace(
    &mut self,
    src: Immediate<M::PointerTag>,
    dest: MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Write an Immediate to memory.

fn write_immediate_no_validate(
    &mut self,
    src: Immediate<M::PointerTag>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Write an immediate to a place. If you use this you are responsible for validating that things got copied at the right type.

fn write_immediate_to_mplace_no_validate(
    &mut self,
    value: Immediate<M::PointerTag>,
    dest: MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Write an immediate to memory. If you use this you are responsible for validating that things got copied at the right type.

pub fn copy_op(
    &mut self,
    src: OpTy<'tcx, M::PointerTag>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Copies the data from an operand to a place. This does not support transmuting! Use copy_op_transmute if the layouts could disagree.

fn copy_op_no_validate(
    &mut self,
    src: OpTy<'tcx, M::PointerTag>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Copies the data from an operand to a place. This does not support transmuting! Use copy_op_transmute if the layouts could disagree. Also, if you use this you are responsible for validating that things get copied at the right type.

pub fn copy_op_transmute(
    &mut self,
    src: OpTy<'tcx, M::PointerTag>,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Copies the data from an operand to a place. The layouts may disagree, but they must have the same size.

pub fn force_allocation_maybe_sized(
    &mut self,
    place: PlaceTy<'tcx, M::PointerTag>,
    meta: MemPlaceMeta<M::PointerTag>
) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, Option<Size>)>
[src]

Ensures that a place is in memory, and returns where it is. If the place currently refers to a local that doesn't yet have a matching allocation, create such an allocation. This is essentially force_to_memplace.

This supports unsized types and returns the computed size to avoid some redundant computation when copying; use force_allocation for a simpler, sized-only version.

pub fn force_allocation(
    &mut self,
    place: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

pub fn allocate(
    &mut self,
    layout: TyAndLayout<'tcx>,
    kind: MemoryKind<M::MemoryKind>
) -> MPlaceTy<'tcx, M::PointerTag>
[src]

pub fn allocate_str(
    &mut self,
    str: &str,
    kind: MemoryKind<M::MemoryKind>
) -> MPlaceTy<'tcx, M::PointerTag>
[src]

Returns a wide MPlace.

pub fn write_discriminant(
    &mut self,
    variant_index: VariantIdx,
    dest: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Writes the discriminant of the given variant.

pub fn raw_const_to_mplace(
    &self,
    raw: ConstAlloc<'tcx>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
[src]

pub(super) fn unpack_dyn_trait(
    &self,
    mplace: MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Instance<'tcx>, MPlaceTy<'tcx, M::PointerTag>)>
[src]

Turn a place with a dyn Trait type into a place with the actual dynamic type. Also return some more information so drop doesn't have to run the same code twice.

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

pub fn run(&mut self) -> InterpResult<'tcx>[src]

pub fn step(&mut self) -> InterpResult<'tcx, bool>[src]

Returns true as long as there are more things to do.

This is used by priroda

This is marked #inline(always) to work around adverserial codegen when opt-level = 3

pub(crate) fn statement(&mut self, stmt: &Statement<'tcx>) -> InterpResult<'tcx>[src]

Runs the interpretation logic for the given mir::Statement at the current frame and statement counter. This also moves the statement counter forward.

pub fn eval_rvalue_into_place(
    &mut self,
    rvalue: &Rvalue<'tcx>,
    place: Place<'tcx>
) -> InterpResult<'tcx>
[src]

Evaluate an assignment statement.

There is no separate eval_rvalue function. Instead, the code for handling each rvalue type writes its results directly into the memory specified by the place.

fn terminator(&mut self, terminator: &Terminator<'tcx>) -> InterpResult<'tcx>[src]

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

pub(super) fn eval_terminator(
    &mut self,
    terminator: &Terminator<'tcx>
) -> InterpResult<'tcx>
[src]

fn check_argument_compat(
    rust_abi: bool,
    caller: TyAndLayout<'tcx>,
    callee: TyAndLayout<'tcx>
) -> bool
[src]

fn pass_argument(
    &mut self,
    rust_abi: bool,
    caller_arg: &mut impl Iterator<Item = OpTy<'tcx, M::PointerTag>>,
    callee_arg: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

Pass a single argument, checking the types for compatibility.

fn eval_fn_call(
    &mut self,
    fn_val: FnVal<'tcx, M::ExtraFnVal>,
    caller_abi: Abi,
    args: &[OpTy<'tcx, M::PointerTag>],
    ret: Option<(PlaceTy<'tcx, M::PointerTag>, BasicBlock)>,
    unwind: Option<BasicBlock>
) -> InterpResult<'tcx>
[src]

Call this function -- pushing the stack frame and initializing the arguments.

fn drop_in_place(
    &mut self,
    place: PlaceTy<'tcx, M::PointerTag>,
    instance: Instance<'tcx>,
    target: BasicBlock,
    unwind: Option<BasicBlock>
) -> InterpResult<'tcx>
[src]

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

pub fn get_vtable(
    &mut self,
    ty: Ty<'tcx>,
    poly_trait_ref: Option<PolyExistentialTraitRef<'tcx>>
) -> InterpResult<'tcx, Pointer<M::PointerTag>>
[src]

Creates a dynamic vtable for the given type and vtable origin. This is used only for objects.

The trait_ref encodes the erased self type. Hence, if we are making an object Foo<Trait> from a value of type Foo<T>, then trait_ref would map T: Trait.

pub fn get_vtable_slot(
    &self,
    vtable: Scalar<M::PointerTag>,
    idx: u64
) -> InterpResult<'tcx, FnVal<'tcx, M::ExtraFnVal>>
[src]

Resolves the function at the specified slot in the provided vtable. An index of '0' corresponds to the first method declared in the trait of the provided vtable.

pub fn read_drop_type_from_vtable(
    &self,
    vtable: Scalar<M::PointerTag>
) -> InterpResult<'tcx, (Instance<'tcx>, Ty<'tcx>)>
[src]

Returns the drop fn instance as well as the actual dynamic type.

pub fn read_size_and_align_from_vtable(
    &self,
    vtable: Scalar<M::PointerTag>
) -> InterpResult<'tcx, (Size, Align)>
[src]

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M>[src]

fn validate_operand_internal(
    &self,
    op: OpTy<'tcx, M::PointerTag>,
    path: Vec<PathElem>,
    ref_tracking: Option<&mut RefTracking<MPlaceTy<'tcx, M::PointerTag>, Vec<PathElem>>>,
    ctfe_mode: Option<CtfeValidationMode>
) -> InterpResult<'tcx>
[src]

pub fn const_validate_operand(
    &self,
    op: OpTy<'tcx, M::PointerTag>,
    path: Vec<PathElem>,
    ref_tracking: &mut RefTracking<MPlaceTy<'tcx, M::PointerTag>, Vec<PathElem>>,
    ctfe_mode: CtfeValidationMode
) -> InterpResult<'tcx>
[src]

This function checks the data at op to be const-valid. op is assumed to cover valid memory if it is an indirect operand. It will error if the bits at the destination do not match the ones described by the layout.

ref_tracking is used to record references that we encounter so that they can be checked recursively by an outside driving loop.

constant controls whether this must satisfy the rules for constants:

  • no pointers to statics.
  • no UnsafeCell or non-ZST &mut.

pub fn validate_operand(
    &self,
    op: OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
[src]

This function checks the data at op to be runtime-valid. op is assumed to cover valid memory if it is an indirect operand. It will error if the bits at the destination do not match the ones described by the layout.

Trait Implementations

impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout for InterpCx<'mir, 'tcx, M>[src]

impl<'mir, 'tcx, M> HasParamEnv<'tcx> for InterpCx<'mir, 'tcx, M> where
    M: Machine<'mir, 'tcx>, 
[src]

impl<'mir, 'tcx, M> HasTyCtxt<'tcx> for InterpCx<'mir, 'tcx, M> where
    M: Machine<'mir, 'tcx>, 
[src]

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> LayoutOf for InterpCx<'mir, 'tcx, M>[src]

type Ty = Ty<'tcx>

type TyAndLayout = InterpResult<'tcx, TyAndLayout<'tcx>>

Auto Trait Implementations

impl<'mir, 'tcx, M> !RefUnwindSafe for InterpCx<'mir, 'tcx, M>[src]

impl<'mir, 'tcx, M> !Send for InterpCx<'mir, 'tcx, M>[src]

impl<'mir, 'tcx, M> !Sync for InterpCx<'mir, 'tcx, M>[src]

impl<'mir, 'tcx, M> Unpin for InterpCx<'mir, 'tcx, M> where
    M: Unpin,
    <M as Machine<'mir, 'tcx>>::ExtraFnVal: Unpin,
    <M as Machine<'mir, 'tcx>>::MemoryExtra: Unpin,
    <M as Machine<'mir, 'tcx>>::MemoryMap: Unpin,
    <M as Machine<'mir, 'tcx>>::PointerTag: Unpin
[src]

impl<'mir, 'tcx, M> !UnwindSafe for InterpCx<'mir, 'tcx, M>[src]

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> PointerArithmetic for T where
    T: HasDataLayout
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> WithConstness for T[src]