pub(crate) struct ConstraintConversion<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
tcx: TyCtxt<'tcx>,
universal_regions: &'a UniversalRegions<'tcx>,
region_bound_pairs: &'a RegionBoundPairs<'tcx>,
implicit_region_bound: Region<'tcx>,
param_env: ParamEnv<'tcx>,
locations: Locations,
span: Span,
category: ConstraintCategory<'tcx>,
from_closure: bool,
constraints: &'a mut MirTypeckRegionConstraints<'tcx>,
}
Fields§
§infcx: &'a InferCtxt<'tcx>
§tcx: TyCtxt<'tcx>
§universal_regions: &'a UniversalRegions<'tcx>
§region_bound_pairs: &'a RegionBoundPairs<'tcx>
Each RBP GK: 'a
is assumed to be true. These encode
relationships like T: 'a
that are added via implicit bounds
or the param_env
.
Each region here is guaranteed to be a key in the indices
map. We use the “original” regions (i.e., the keys from the
map, and not the values) because the code in
process_registered_region_obligations
has some special-cased
logic expecting to see (e.g.) ReStatic
, and if we supplied
our special inference variable there, we would mess that up.
implicit_region_bound: Region<'tcx>
§param_env: ParamEnv<'tcx>
§locations: Locations
§span: Span
§category: ConstraintCategory<'tcx>
§from_closure: bool
§constraints: &'a mut MirTypeckRegionConstraints<'tcx>
Implementations§
source§impl<'a, 'tcx> ConstraintConversion<'a, 'tcx>
impl<'a, 'tcx> ConstraintConversion<'a, 'tcx>
pub(crate) fn new( infcx: &'a InferCtxt<'tcx>, universal_regions: &'a UniversalRegions<'tcx>, region_bound_pairs: &'a RegionBoundPairs<'tcx>, implicit_region_bound: Region<'tcx>, param_env: ParamEnv<'tcx>, locations: Locations, span: Span, category: ConstraintCategory<'tcx>, constraints: &'a mut MirTypeckRegionConstraints<'tcx> ) -> Self
pub(super) fn convert_all( &mut self, query_constraints: &QueryRegionConstraints<'tcx> )
sourcepub fn apply_closure_requirements(
&mut self,
closure_requirements: &ClosureRegionRequirements<'tcx>,
closure_def_id: DefId,
closure_substs: SubstsRef<'tcx>
)
pub fn apply_closure_requirements( &mut self, closure_requirements: &ClosureRegionRequirements<'tcx>, closure_def_id: DefId, closure_substs: SubstsRef<'tcx> )
Given an instance of the closure type, this method instantiates the “extra” requirements
that we computed for the closure. This has the effect of adding new outlives obligations
to existing region variables in closure_substs
.
fn convert( &mut self, predicate: OutlivesPredicate<GenericArg<'tcx>, Region<'tcx>>, constraint_category: ConstraintCategory<'tcx> )
sourcefn replace_placeholders_with_nll<T: TypeFoldable<TyCtxt<'tcx>>>(
&mut self,
value: T
) -> T
fn replace_placeholders_with_nll<T: TypeFoldable<TyCtxt<'tcx>>>( &mut self, value: T ) -> T
Placeholder regions need to be converted eagerly because it may create new region variables, which we must not do when verifying our region bounds.
FIXME: This should get removed once higher ranked region obligations are dealt with during trait solving.
fn verify_to_type_test( &mut self, generic_kind: GenericKind<'tcx>, region: Region<'tcx>, verify_bound: VerifyBound<'tcx> ) -> TypeTest<'tcx>
fn to_region_vid(&mut self, r: Region<'tcx>) -> RegionVid
fn add_outlives( &mut self, sup: RegionVid, sub: RegionVid, category: ConstraintCategory<'tcx> )
fn add_type_test(&mut self, type_test: TypeTest<'tcx>)
Trait Implementations§
source§impl<'a, 'b, 'tcx> TypeOutlivesDelegate<'tcx> for &'a mut ConstraintConversion<'b, 'tcx>
impl<'a, 'b, 'tcx> TypeOutlivesDelegate<'tcx> for &'a mut ConstraintConversion<'b, 'tcx>
fn push_sub_region_constraint( &mut self, _origin: SubregionOrigin<'tcx>, a: Region<'tcx>, b: Region<'tcx>, constraint_category: ConstraintCategory<'tcx> )
fn push_verify( &mut self, _origin: SubregionOrigin<'tcx>, kind: GenericKind<'tcx>, a: Region<'tcx>, bound: VerifyBound<'tcx> )
Auto Trait Implementations§
impl<'a, 'tcx> !RefUnwindSafe for ConstraintConversion<'a, 'tcx>
impl<'a, 'tcx> !Send for ConstraintConversion<'a, 'tcx>
impl<'a, 'tcx> !Sync for ConstraintConversion<'a, 'tcx>
impl<'a, 'tcx> Unpin for ConstraintConversion<'a, 'tcx>where 'tcx: 'a,
impl<'a, 'tcx> !UnwindSafe for ConstraintConversion<'a, 'tcx>
Blanket Implementations§
Layout§
Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...)
attributes. Please see the Rust Reference’s “Type Layout” chapter for details on type layout guarantees.
Size: 104 bytes