Skip to main content

alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::clone::TrivialClone;
78#[cfg(not(no_global_oom_handling))]
79use core::cmp;
80use core::cmp::Ordering;
81use core::hash::{Hash, Hasher};
82#[cfg(not(no_global_oom_handling))]
83use core::iter;
84#[cfg(not(no_global_oom_handling))]
85use core::marker::Destruct;
86use core::marker::{Freeze, PhantomData};
87use core::mem::{self, Assume, ManuallyDrop, MaybeUninit, SizedTypeProperties, TransmuteFrom};
88use core::ops::{self, Index, IndexMut, Range, RangeBounds};
89use core::ptr::{self, NonNull};
90use core::slice::{self, SliceIndex};
91use core::{fmt, hint, intrinsics, ub_checks};
92
93#[stable(feature = "extract_if", since = "1.87.0")]
94pub use self::extract_if::ExtractIf;
95use crate::alloc::{Allocator, Global};
96use crate::borrow::{Cow, ToOwned};
97use crate::boxed::Box;
98use crate::collections::TryReserveError;
99use crate::raw_vec::RawVec;
100
101mod extract_if;
102
103#[cfg(not(no_global_oom_handling))]
104#[stable(feature = "vec_splice", since = "1.21.0")]
105pub use self::splice::Splice;
106
107#[cfg(not(no_global_oom_handling))]
108mod splice;
109
110#[stable(feature = "drain", since = "1.6.0")]
111pub use self::drain::Drain;
112
113mod drain;
114
115#[cfg(not(no_global_oom_handling))]
116mod cow;
117
118#[cfg(not(no_global_oom_handling))]
119pub(crate) use self::in_place_collect::AsVecIntoIter;
120#[stable(feature = "rust1", since = "1.0.0")]
121pub use self::into_iter::IntoIter;
122
123mod into_iter;
124
125#[cfg(not(no_global_oom_handling))]
126use self::is_zero::IsZero;
127
128#[cfg(not(no_global_oom_handling))]
129mod is_zero;
130
131#[cfg(not(no_global_oom_handling))]
132mod in_place_collect;
133
134mod partial_eq;
135
136#[unstable(feature = "vec_peek_mut", issue = "122742")]
137pub use self::peek_mut::PeekMut;
138
139mod peek_mut;
140
141#[cfg(not(no_global_oom_handling))]
142use self::spec_from_elem::SpecFromElem;
143
144#[cfg(not(no_global_oom_handling))]
145mod spec_from_elem;
146
147#[cfg(not(no_global_oom_handling))]
148use self::set_len_on_drop::SetLenOnDrop;
149
150#[cfg(not(no_global_oom_handling))]
151mod set_len_on_drop;
152
153#[cfg(not(no_global_oom_handling))]
154use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
155
156#[cfg(not(no_global_oom_handling))]
157mod in_place_drop;
158
159#[cfg(not(no_global_oom_handling))]
160use self::spec_from_iter_nested::SpecFromIterNested;
161
162#[cfg(not(no_global_oom_handling))]
163mod spec_from_iter_nested;
164
165#[cfg(not(no_global_oom_handling))]
166use self::spec_from_iter::SpecFromIter;
167
168#[cfg(not(no_global_oom_handling))]
169mod spec_from_iter;
170
171#[cfg(not(no_global_oom_handling))]
172use self::spec_extend::SpecExtend;
173
174#[cfg(not(no_global_oom_handling))]
175mod spec_extend;
176
177/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
178///
179/// # Examples
180///
181/// ```
182/// let mut vec = Vec::new();
183/// vec.push(1);
184/// vec.push(2);
185///
186/// assert_eq!(vec.len(), 2);
187/// assert_eq!(vec[0], 1);
188///
189/// assert_eq!(vec.pop(), Some(2));
190/// assert_eq!(vec.len(), 1);
191///
192/// vec[0] = 7;
193/// assert_eq!(vec[0], 7);
194///
195/// vec.extend([1, 2, 3]);
196///
197/// for x in &vec {
198///     println!("{x}");
199/// }
200/// assert_eq!(vec, [7, 1, 2, 3]);
201/// ```
202///
203/// The [`vec!`] macro is provided for convenient initialization:
204///
205/// ```
206/// let mut vec1 = vec![1, 2, 3];
207/// vec1.push(4);
208/// let vec2 = Vec::from([1, 2, 3, 4]);
209/// assert_eq!(vec1, vec2);
210/// ```
211///
212/// It can also initialize each element of a `Vec<T>` with a given value.
213/// This may be more efficient than performing allocation and initialization
214/// in separate steps, especially when initializing a vector of zeros:
215///
216/// ```
217/// let vec = vec![0; 5];
218/// assert_eq!(vec, [0, 0, 0, 0, 0]);
219///
220/// // The following is equivalent, but potentially slower:
221/// let mut vec = Vec::with_capacity(5);
222/// vec.resize(5, 0);
223/// assert_eq!(vec, [0, 0, 0, 0, 0]);
224/// ```
225///
226/// For more information, see
227/// [Capacity and Reallocation](#capacity-and-reallocation).
228///
229/// Use a `Vec<T>` as an efficient stack:
230///
231/// ```
232/// let mut stack = Vec::new();
233///
234/// stack.push(1);
235/// stack.push(2);
236/// stack.push(3);
237///
238/// while let Some(top) = stack.pop() {
239///     // Prints 3, 2, 1
240///     println!("{top}");
241/// }
242/// ```
243///
244/// # Indexing
245///
246/// The `Vec` type allows access to values by index, because it implements the
247/// [`Index`] trait. An example will be more explicit:
248///
249/// ```
250/// let v = vec![0, 2, 4, 6];
251/// println!("{}", v[1]); // it will display '2'
252/// ```
253///
254/// However be careful: if you try to access an index which isn't in the `Vec`,
255/// your software will panic! You cannot do this:
256///
257/// ```should_panic
258/// let v = vec![0, 2, 4, 6];
259/// println!("{}", v[6]); // it will panic!
260/// ```
261///
262/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
263/// the `Vec`.
264///
265/// # Slicing
266///
267/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
268/// To get a [slice][prim@slice], use [`&`]. Example:
269///
270/// ```
271/// fn read_slice(slice: &[usize]) {
272///     // ...
273/// }
274///
275/// let v = vec![0, 1];
276/// read_slice(&v);
277///
278/// // ... and that's all!
279/// // you can also do it like this:
280/// let u: &[usize] = &v;
281/// // or like this:
282/// let u: &[_] = &v;
283/// ```
284///
285/// In Rust, it's more common to pass slices as arguments rather than vectors
286/// when you just want to provide read access. The same goes for [`String`] and
287/// [`&str`].
288///
289/// # Capacity and reallocation
290///
291/// The capacity of a vector is the amount of space allocated for any future
292/// elements that will be added onto the vector. This is not to be confused with
293/// the *length* of a vector, which specifies the number of actual elements
294/// within the vector. If a vector's length exceeds its capacity, its capacity
295/// will automatically be increased, but its elements will have to be
296/// reallocated.
297///
298/// For example, a vector with capacity 10 and length 0 would be an empty vector
299/// with space for 10 more elements. Pushing 10 or fewer elements onto the
300/// vector will not change its capacity or cause reallocation to occur. However,
301/// if the vector's length is increased to 11, it will have to reallocate, which
302/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
303/// whenever possible to specify how big the vector is expected to get.
304///
305/// # Guarantees
306///
307/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
308/// about its design. This ensures that it's as low-overhead as possible in
309/// the general case, and can be correctly manipulated in primitive ways
310/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
311/// If additional type parameters are added (e.g., to support custom allocators),
312/// overriding their defaults may change the behavior.
313///
314/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
315/// triplet. No more, no less. The order of these fields is completely
316/// unspecified, and you should use the appropriate methods to modify these.
317/// The pointer will never be null, so this type is null-pointer-optimized.
318///
319/// However, the pointer might not actually point to allocated memory. In particular,
320/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
321/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
322/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
323/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
324/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
325/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
326/// details are very subtle --- if you intend to allocate memory using a `Vec`
327/// and use it for something else (either to pass to unsafe code, or to build your
328/// own memory-backed collection), be sure to deallocate this memory by using
329/// `from_raw_parts` to recover the `Vec` and then dropping it.
330///
331/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
332/// (as defined by the allocator Rust is configured to use by default), and its
333/// pointer points to [`len`] initialized, contiguous elements in order (what
334/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
335/// logically uninitialized, contiguous elements.
336///
337/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
338/// visualized as below. The top part is the `Vec` struct, it contains a
339/// pointer to the head of the allocation in the heap, length and capacity.
340/// The bottom part is the allocation on the heap, a contiguous memory block.
341///
342/// ```text
343///             ptr      len  capacity
344///        +--------+--------+--------+
345///        | 0x0123 |      2 |      4 |
346///        +--------+--------+--------+
347///             |
348///             v
349/// Heap   +--------+--------+--------+--------+
350///        |    'a' |    'b' | uninit | uninit |
351///        +--------+--------+--------+--------+
352/// ```
353///
354/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
355/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
356///   layout (including the order of fields).
357///
358/// `Vec` will never perform a "small optimization" where elements are actually
359/// stored on the stack for two reasons:
360///
361/// * It would make it more difficult for unsafe code to correctly manipulate
362///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
363///   only moved, and it would be more difficult to determine if a `Vec` had
364///   actually allocated memory.
365///
366/// * It would penalize the general case, incurring an additional branch
367///   on every access.
368///
369/// `Vec` will never automatically shrink itself, even if completely empty. This
370/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
371/// and then filling it back up to the same [`len`] should incur no calls to
372/// the allocator. If you wish to free up unused memory, use
373/// [`shrink_to_fit`] or [`shrink_to`].
374///
375/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
376/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
377/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
378/// accurate, and can be relied on. It can even be used to manually free the memory
379/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
380/// when not necessary.
381///
382/// `Vec` does not guarantee any particular growth strategy when reallocating
383/// when full, nor when [`reserve`] is called. The current strategy is basic
384/// and it may prove desirable to use a non-constant growth factor. Whatever
385/// strategy is used will of course guarantee *O*(1) amortized [`push`].
386///
387/// It is guaranteed, in order to respect the intentions of the programmer, that
388/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
389/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
390/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
391/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
392///
393/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
394/// and not more than the allocated capacity.
395///
396/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
397/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
398/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
399/// `Vec` exploits this fact as much as reasonable when implementing common conversions
400/// such as [`into_boxed_slice`].
401///
402/// `Vec` will not specifically overwrite any data that is removed from it,
403/// but also won't specifically preserve it. Its uninitialized memory is
404/// scratch space that it may use however it wants. It will generally just do
405/// whatever is most efficient or otherwise easy to implement. Do not rely on
406/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
407/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
408/// first, that might not actually happen because the optimizer does not consider
409/// this a side-effect that must be preserved. There is one case which we will
410/// not break, however: using `unsafe` code to write to the excess capacity,
411/// and then increasing the length to match, is always valid.
412///
413/// Currently, `Vec` does not guarantee the order in which elements are dropped.
414/// The order has changed in the past and may change again.
415///
416/// [`get`]: slice::get
417/// [`get_mut`]: slice::get_mut
418/// [`String`]: crate::string::String
419/// [`&str`]: type@str
420/// [`shrink_to_fit`]: Vec::shrink_to_fit
421/// [`shrink_to`]: Vec::shrink_to
422/// [capacity]: Vec::capacity
423/// [`capacity`]: Vec::capacity
424/// [`Vec::capacity`]: Vec::capacity
425/// [size_of::\<T>]: size_of
426/// [len]: Vec::len
427/// [`len`]: Vec::len
428/// [`push`]: Vec::push
429/// [`insert`]: Vec::insert
430/// [`reserve`]: Vec::reserve
431/// [`Vec::with_capacity(n)`]: Vec::with_capacity
432/// [`MaybeUninit`]: core::mem::MaybeUninit
433/// [owned slice]: Box
434/// [`into_boxed_slice`]: Vec::into_boxed_slice
435#[stable(feature = "rust1", since = "1.0.0")]
436#[rustc_diagnostic_item = "Vec"]
437#[rustc_insignificant_dtor]
438#[doc(alias = "list")]
439#[doc(alias = "vector")]
440pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
441    buf: RawVec<T, A>,
442    len: usize,
443}
444
445////////////////////////////////////////////////////////////////////////////////
446// Inherent methods
447////////////////////////////////////////////////////////////////////////////////
448
449impl<T> Vec<T> {
450    /// Constructs a new, empty `Vec<T>`.
451    ///
452    /// The vector will not allocate until elements are pushed onto it.
453    ///
454    /// # Examples
455    ///
456    /// ```
457    /// # #![allow(unused_mut)]
458    /// let mut vec: Vec<i32> = Vec::new();
459    /// ```
460    #[inline]
461    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
462    #[rustc_diagnostic_item = "vec_new"]
463    #[stable(feature = "rust1", since = "1.0.0")]
464    #[must_use]
465    pub const fn new() -> Self {
466        Vec { buf: RawVec::new(), len: 0 }
467    }
468
469    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
470    ///
471    /// The vector will be able to hold at least `capacity` elements without
472    /// reallocating. This method is allowed to allocate for more elements than
473    /// `capacity`. If `capacity` is zero, the vector will not allocate.
474    ///
475    /// It is important to note that although the returned vector has the
476    /// minimum *capacity* specified, the vector will have a zero *length*. For
477    /// an explanation of the difference between length and capacity, see
478    /// *[Capacity and reallocation]*.
479    ///
480    /// If it is important to know the exact allocated capacity of a `Vec`,
481    /// always use the [`capacity`] method after construction.
482    ///
483    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
484    /// and the capacity will always be `usize::MAX`.
485    ///
486    /// [Capacity and reallocation]: #capacity-and-reallocation
487    /// [`capacity`]: Vec::capacity
488    ///
489    /// # Panics
490    ///
491    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// let mut vec = Vec::with_capacity(10);
497    ///
498    /// // The vector contains no items, even though it has capacity for more
499    /// assert_eq!(vec.len(), 0);
500    /// assert!(vec.capacity() >= 10);
501    ///
502    /// // These are all done without reallocating...
503    /// for i in 0..10 {
504    ///     vec.push(i);
505    /// }
506    /// assert_eq!(vec.len(), 10);
507    /// assert!(vec.capacity() >= 10);
508    ///
509    /// // ...but this may make the vector reallocate
510    /// vec.push(11);
511    /// assert_eq!(vec.len(), 11);
512    /// assert!(vec.capacity() >= 11);
513    ///
514    /// // A vector of a zero-sized type will always over-allocate, since no
515    /// // allocation is necessary
516    /// let vec_units = Vec::<()>::with_capacity(10);
517    /// assert_eq!(vec_units.capacity(), usize::MAX);
518    /// ```
519    #[cfg(not(no_global_oom_handling))]
520    #[inline]
521    #[stable(feature = "rust1", since = "1.0.0")]
522    #[must_use]
523    #[rustc_diagnostic_item = "vec_with_capacity"]
524    #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
525    pub const fn with_capacity(capacity: usize) -> Self {
526        Self::with_capacity_in(capacity, Global)
527    }
528
529    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
530    ///
531    /// The vector will be able to hold at least `capacity` elements without
532    /// reallocating. This method is allowed to allocate for more elements than
533    /// `capacity`. If `capacity` is zero, the vector will not allocate.
534    ///
535    /// # Errors
536    ///
537    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
538    /// or if the allocator reports allocation failure.
539    #[inline]
540    #[unstable(feature = "try_with_capacity", issue = "91913")]
541    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
542        Self::try_with_capacity_in(capacity, Global)
543    }
544
545    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
546    ///
547    /// # Safety
548    ///
549    /// This is highly unsafe, due to the number of invariants that aren't
550    /// checked:
551    ///
552    /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
553    ///   been allocated using the global allocator, such as via the [`alloc::alloc`]
554    ///   function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
555    ///   only be non-null and aligned.
556    /// * `T` needs to have the same alignment as what `ptr` was allocated with,
557    ///   if the pointer is required to be allocated.
558    ///   (`T` having a less strict alignment is not sufficient, the alignment really
559    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
560    ///   allocated and deallocated with the same layout.)
561    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
562    ///   nonzero, needs to be the same size as the pointer was allocated with.
563    ///   (Because similar to alignment, [`dealloc`] must be called with the same
564    ///   layout `size`.)
565    /// * `length` needs to be less than or equal to `capacity`.
566    /// * The first `length` values must be properly initialized values of type `T`.
567    /// * `capacity` needs to be the capacity that the pointer was allocated with,
568    ///   if the pointer is required to be allocated.
569    /// * The allocated size in bytes must be no larger than `isize::MAX`.
570    ///   See the safety documentation of [`pointer::offset`].
571    ///
572    /// These requirements are always upheld by any `ptr` that has been allocated
573    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
574    /// upheld.
575    ///
576    /// Violating these may cause problems like corrupting the allocator's
577    /// internal data structures. For example it is normally **not** safe
578    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
579    /// `size_t`, doing so is only safe if the array was initially allocated by
580    /// a `Vec` or `String`.
581    /// It's also not safe to build one from a `Vec<u16>` and its length, because
582    /// the allocator cares about the alignment, and these two types have different
583    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
584    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
585    /// these issues, it is often preferable to do casting/transmuting using
586    /// [`slice::from_raw_parts`] instead.
587    ///
588    /// The ownership of `ptr` is effectively transferred to the
589    /// `Vec<T>` which may then deallocate, reallocate or change the
590    /// contents of memory pointed to by the pointer at will. Ensure
591    /// that nothing else uses the pointer after calling this
592    /// function.
593    ///
594    /// [`String`]: crate::string::String
595    /// [`alloc::alloc`]: crate::alloc::alloc
596    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
597    ///
598    /// # Examples
599    ///
600    /// ```
601    /// use std::ptr;
602    ///
603    /// let v = vec![1, 2, 3];
604    ///
605    /// // Deconstruct the vector into parts.
606    /// let (p, len, cap) = v.into_raw_parts();
607    ///
608    /// unsafe {
609    ///     // Overwrite memory with 4, 5, 6
610    ///     for i in 0..len {
611    ///         ptr::write(p.add(i), 4 + i);
612    ///     }
613    ///
614    ///     // Put everything back together into a Vec
615    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
616    ///     assert_eq!(rebuilt, [4, 5, 6]);
617    /// }
618    /// ```
619    ///
620    /// Using memory that was allocated elsewhere:
621    ///
622    /// ```rust
623    /// use std::alloc::{alloc, Layout};
624    ///
625    /// fn main() {
626    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
627    ///
628    ///     let vec = unsafe {
629    ///         let mem = alloc(layout).cast::<u32>();
630    ///         if mem.is_null() {
631    ///             return;
632    ///         }
633    ///
634    ///         mem.write(1_000_000);
635    ///
636    ///         Vec::from_raw_parts(mem, 1, 16)
637    ///     };
638    ///
639    ///     assert_eq!(vec, &[1_000_000]);
640    ///     assert_eq!(vec.capacity(), 16);
641    /// }
642    /// ```
643    #[inline]
644    #[stable(feature = "rust1", since = "1.0.0")]
645    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
646        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
647    }
648
649    #[doc(alias = "from_non_null_parts")]
650    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
651    ///
652    /// # Safety
653    ///
654    /// This is highly unsafe, due to the number of invariants that aren't
655    /// checked:
656    ///
657    /// * `ptr` must have been allocated using the global allocator, such as via
658    ///   the [`alloc::alloc`] function.
659    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
660    ///   (`T` having a less strict alignment is not sufficient, the alignment really
661    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
662    ///   allocated and deallocated with the same layout.)
663    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
664    ///   to be the same size as the pointer was allocated with. (Because similar to
665    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
666    /// * `length` needs to be less than or equal to `capacity`.
667    /// * The first `length` values must be properly initialized values of type `T`.
668    /// * `capacity` needs to be the capacity that the pointer was allocated with.
669    /// * The allocated size in bytes must be no larger than `isize::MAX`.
670    ///   See the safety documentation of [`pointer::offset`].
671    ///
672    /// These requirements are always upheld by any `ptr` that has been allocated
673    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
674    /// upheld.
675    ///
676    /// Violating these may cause problems like corrupting the allocator's
677    /// internal data structures. For example it is normally **not** safe
678    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
679    /// `size_t`, doing so is only safe if the array was initially allocated by
680    /// a `Vec` or `String`.
681    /// It's also not safe to build one from a `Vec<u16>` and its length, because
682    /// the allocator cares about the alignment, and these two types have different
683    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
684    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
685    /// these issues, it is often preferable to do casting/transmuting using
686    /// [`NonNull::slice_from_raw_parts`] instead.
687    ///
688    /// The ownership of `ptr` is effectively transferred to the
689    /// `Vec<T>` which may then deallocate, reallocate or change the
690    /// contents of memory pointed to by the pointer at will. Ensure
691    /// that nothing else uses the pointer after calling this
692    /// function.
693    ///
694    /// [`String`]: crate::string::String
695    /// [`alloc::alloc`]: crate::alloc::alloc
696    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
697    ///
698    /// # Examples
699    ///
700    /// ```
701    /// #![feature(box_vec_non_null)]
702    ///
703    /// let v = vec![1, 2, 3];
704    ///
705    /// // Deconstruct the vector into parts.
706    /// let (p, len, cap) = v.into_parts();
707    ///
708    /// unsafe {
709    ///     // Overwrite memory with 4, 5, 6
710    ///     for i in 0..len {
711    ///         p.add(i).write(4 + i);
712    ///     }
713    ///
714    ///     // Put everything back together into a Vec
715    ///     let rebuilt = Vec::from_parts(p, len, cap);
716    ///     assert_eq!(rebuilt, [4, 5, 6]);
717    /// }
718    /// ```
719    ///
720    /// Using memory that was allocated elsewhere:
721    ///
722    /// ```rust
723    /// #![feature(box_vec_non_null)]
724    ///
725    /// use std::alloc::{alloc, Layout};
726    /// use std::ptr::NonNull;
727    ///
728    /// fn main() {
729    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
730    ///
731    ///     let vec = unsafe {
732    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
733    ///             return;
734    ///         };
735    ///
736    ///         mem.write(1_000_000);
737    ///
738    ///         Vec::from_parts(mem, 1, 16)
739    ///     };
740    ///
741    ///     assert_eq!(vec, &[1_000_000]);
742    ///     assert_eq!(vec.capacity(), 16);
743    /// }
744    /// ```
745    #[inline]
746    #[unstable(feature = "box_vec_non_null", issue = "130364")]
747    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
748        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
749    }
750
751    /// Creates a `Vec<T>` where each element is produced by calling `f` with
752    /// that element's index while walking forward through the `Vec<T>`.
753    ///
754    /// This is essentially the same as writing
755    ///
756    /// ```text
757    /// vec![f(0), f(1), f(2), …, f(length - 2), f(length - 1)]
758    /// ```
759    /// and is similar to `(0..i).map(f)`, just for `Vec<T>`s not iterators.
760    ///
761    /// If `length == 0`, this produces an empty `Vec<T>` without ever calling `f`.
762    ///
763    /// # Example
764    ///
765    /// ```rust
766    /// #![feature(vec_from_fn)]
767    ///
768    /// let vec = Vec::from_fn(5, |i| i);
769    ///
770    /// // indexes are:  0  1  2  3  4
771    /// assert_eq!(vec, [0, 1, 2, 3, 4]);
772    ///
773    /// let vec2 = Vec::from_fn(8, |i| i * 2);
774    ///
775    /// // indexes are:   0  1  2  3  4  5   6   7
776    /// assert_eq!(vec2, [0, 2, 4, 6, 8, 10, 12, 14]);
777    ///
778    /// let bool_vec = Vec::from_fn(5, |i| i % 2 == 0);
779    ///
780    /// // indexes are:       0     1      2     3      4
781    /// assert_eq!(bool_vec, [true, false, true, false, true]);
782    /// ```
783    ///
784    /// The `Vec<T>` is generated in ascending index order, starting from the front
785    /// and going towards the back, so you can use closures with mutable state:
786    /// ```
787    /// #![feature(vec_from_fn)]
788    ///
789    /// let mut state = 1;
790    /// let a = Vec::from_fn(6, |_| { let x = state; state *= 2; x });
791    ///
792    /// assert_eq!(a, [1, 2, 4, 8, 16, 32]);
793    /// ```
794    #[cfg(not(no_global_oom_handling))]
795    #[inline]
796    #[unstable(feature = "vec_from_fn", issue = "149698")]
797    pub fn from_fn<F>(length: usize, f: F) -> Self
798    where
799        F: FnMut(usize) -> T,
800    {
801        (0..length).map(f).collect()
802    }
803
804    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
805    ///
806    /// Returns the raw pointer to the underlying data, the length of
807    /// the vector (in elements), and the allocated capacity of the
808    /// data (in elements). These are the same arguments in the same
809    /// order as the arguments to [`from_raw_parts`].
810    ///
811    /// After calling this function, the caller is responsible for the
812    /// memory previously managed by the `Vec`. Most often, one does
813    /// this by converting the raw pointer, length, and capacity back
814    /// into a `Vec` with the [`from_raw_parts`] function; more generally,
815    /// if `T` is non-zero-sized and the capacity is nonzero, one may use
816    /// any method that calls [`dealloc`] with a layout of
817    /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
818    /// capacity is zero, nothing needs to be done.
819    ///
820    /// [`from_raw_parts`]: Vec::from_raw_parts
821    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
822    ///
823    /// # Examples
824    ///
825    /// ```
826    /// let v: Vec<i32> = vec![-1, 0, 1];
827    ///
828    /// let (ptr, len, cap) = v.into_raw_parts();
829    ///
830    /// let rebuilt = unsafe {
831    ///     // We can now make changes to the components, such as
832    ///     // transmuting the raw pointer to a compatible type.
833    ///     let ptr = ptr as *mut u32;
834    ///
835    ///     Vec::from_raw_parts(ptr, len, cap)
836    /// };
837    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
838    /// ```
839    #[must_use = "losing the pointer will leak memory"]
840    #[stable(feature = "vec_into_raw_parts", since = "1.93.0")]
841    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
842        let mut me = ManuallyDrop::new(self);
843        (me.as_mut_ptr(), me.len(), me.capacity())
844    }
845
846    #[doc(alias = "into_non_null_parts")]
847    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
848    ///
849    /// Returns the `NonNull` pointer to the underlying data, the length of
850    /// the vector (in elements), and the allocated capacity of the
851    /// data (in elements). These are the same arguments in the same
852    /// order as the arguments to [`from_parts`].
853    ///
854    /// After calling this function, the caller is responsible for the
855    /// memory previously managed by the `Vec`. The only way to do
856    /// this is to convert the `NonNull` pointer, length, and capacity back
857    /// into a `Vec` with the [`from_parts`] function, allowing
858    /// the destructor to perform the cleanup.
859    ///
860    /// [`from_parts`]: Vec::from_parts
861    ///
862    /// # Examples
863    ///
864    /// ```
865    /// #![feature(box_vec_non_null)]
866    ///
867    /// let v: Vec<i32> = vec![-1, 0, 1];
868    ///
869    /// let (ptr, len, cap) = v.into_parts();
870    ///
871    /// let rebuilt = unsafe {
872    ///     // We can now make changes to the components, such as
873    ///     // transmuting the raw pointer to a compatible type.
874    ///     let ptr = ptr.cast::<u32>();
875    ///
876    ///     Vec::from_parts(ptr, len, cap)
877    /// };
878    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
879    /// ```
880    #[must_use = "losing the pointer will leak memory"]
881    #[unstable(feature = "box_vec_non_null", issue = "130364")]
882    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
883        let (ptr, len, capacity) = self.into_raw_parts();
884        // SAFETY: A `Vec` always has a non-null pointer.
885        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
886    }
887
888    /// Interns the `Vec<T>`, making the underlying memory read-only. This method should be
889    /// called during compile time. (This is a no-op if called during runtime)
890    ///
891    /// This method must be called if the memory used by `Vec` needs to appear in the final
892    /// values of constants.
893    #[unstable(feature = "const_heap", issue = "79597")]
894    #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
895    pub const fn const_make_global(mut self) -> &'static [T]
896    where
897        T: Freeze,
898    {
899        unsafe { core::intrinsics::const_make_global(self.as_mut_ptr().cast()) };
900        let me = ManuallyDrop::new(self);
901        unsafe { slice::from_raw_parts(me.as_ptr(), me.len) }
902    }
903}
904
905#[cfg(not(no_global_oom_handling))]
906#[rustc_const_unstable(feature = "const_heap", issue = "79597")]
907#[rustfmt::skip] // FIXME(fee1-dead): temporary measure before rustfmt is bumped
908const impl<T, A: [const] Allocator + [const] Destruct> Vec<T, A> {
909    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
910    /// with the provided allocator.
911    ///
912    /// The vector will be able to hold at least `capacity` elements without
913    /// reallocating. This method is allowed to allocate for more elements than
914    /// `capacity`. If `capacity` is zero, the vector will not allocate.
915    ///
916    /// It is important to note that although the returned vector has the
917    /// minimum *capacity* specified, the vector will have a zero *length*. For
918    /// an explanation of the difference between length and capacity, see
919    /// *[Capacity and reallocation]*.
920    ///
921    /// If it is important to know the exact allocated capacity of a `Vec`,
922    /// always use the [`capacity`] method after construction.
923    ///
924    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
925    /// and the capacity will always be `usize::MAX`.
926    ///
927    /// [Capacity and reallocation]: #capacity-and-reallocation
928    /// [`capacity`]: Vec::capacity
929    ///
930    /// # Panics
931    ///
932    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
933    ///
934    /// # Examples
935    ///
936    /// ```
937    /// #![feature(allocator_api)]
938    ///
939    /// use std::alloc::System;
940    ///
941    /// let mut vec = Vec::with_capacity_in(10, System);
942    ///
943    /// // The vector contains no items, even though it has capacity for more
944    /// assert_eq!(vec.len(), 0);
945    /// assert!(vec.capacity() >= 10);
946    ///
947    /// // These are all done without reallocating...
948    /// for i in 0..10 {
949    ///     vec.push(i);
950    /// }
951    /// assert_eq!(vec.len(), 10);
952    /// assert!(vec.capacity() >= 10);
953    ///
954    /// // ...but this may make the vector reallocate
955    /// vec.push(11);
956    /// assert_eq!(vec.len(), 11);
957    /// assert!(vec.capacity() >= 11);
958    ///
959    /// // A vector of a zero-sized type will always over-allocate, since no
960    /// // allocation is necessary
961    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
962    /// assert_eq!(vec_units.capacity(), usize::MAX);
963    /// ```
964    #[inline]
965    #[unstable(feature = "allocator_api", issue = "32838")]
966    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
967        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
968    }
969
970    /// Appends an element to the back of a collection.
971    ///
972    /// # Panics
973    ///
974    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
975    ///
976    /// # Examples
977    ///
978    /// ```
979    /// let mut vec = vec![1, 2];
980    /// vec.push(3);
981    /// assert_eq!(vec, [1, 2, 3]);
982    /// ```
983    ///
984    /// # Time complexity
985    ///
986    /// Takes amortized *O*(1) time. If the vector's length would exceed its
987    /// capacity after the push, *O*(*capacity*) time is taken to copy the
988    /// vector's elements to a larger allocation. This expensive operation is
989    /// offset by the *capacity* *O*(1) insertions it allows.
990    #[inline]
991    #[stable(feature = "rust1", since = "1.0.0")]
992    #[rustc_confusables("push_back", "put", "append")]
993    pub fn push(&mut self, value: T) {
994        let _ = self.push_mut(value);
995    }
996
997    /// Appends an element to the back of a collection, returning a reference to it.
998    ///
999    /// # Panics
1000    ///
1001    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1002    ///
1003    /// # Examples
1004    ///
1005    /// ```
1006    /// let mut vec = vec![1, 2];
1007    /// let last = vec.push_mut(3);
1008    /// assert_eq!(*last, 3);
1009    /// assert_eq!(vec, [1, 2, 3]);
1010    ///
1011    /// let last = vec.push_mut(3);
1012    /// *last += 1;
1013    /// assert_eq!(vec, [1, 2, 3, 4]);
1014    /// ```
1015    ///
1016    /// # Time complexity
1017    ///
1018    /// Takes amortized *O*(1) time. If the vector's length would exceed its
1019    /// capacity after the push, *O*(*capacity*) time is taken to copy the
1020    /// vector's elements to a larger allocation. This expensive operation is
1021    /// offset by the *capacity* *O*(1) insertions it allows.
1022    #[inline]
1023    #[stable(feature = "push_mut", since = "CURRENT_RUSTC_VERSION")]
1024    #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
1025    pub fn push_mut(&mut self, value: T) -> &mut T {
1026        // Inform codegen that the length does not change across grow_one().
1027        let len = self.len;
1028        // This will panic or abort if we would allocate > isize::MAX bytes
1029        // or if the length increment would overflow for zero-sized types.
1030        if len == self.buf.capacity() {
1031            self.buf.grow_one();
1032        }
1033        unsafe {
1034            let end = self.as_mut_ptr().add(len);
1035            ptr::write(end, value);
1036            self.len = len + 1;
1037            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
1038            &mut *end
1039        }
1040    }
1041}
1042
1043impl<T, A: Allocator> Vec<T, A> {
1044    /// Constructs a new, empty `Vec<T, A>`.
1045    ///
1046    /// The vector will not allocate until elements are pushed onto it.
1047    ///
1048    /// # Examples
1049    ///
1050    /// ```
1051    /// #![feature(allocator_api)]
1052    ///
1053    /// use std::alloc::System;
1054    ///
1055    /// # #[allow(unused_mut)]
1056    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
1057    /// ```
1058    #[inline]
1059    #[unstable(feature = "allocator_api", issue = "32838")]
1060    pub const fn new_in(alloc: A) -> Self {
1061        Vec { buf: RawVec::new_in(alloc), len: 0 }
1062    }
1063
1064    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
1065    /// with the provided allocator.
1066    ///
1067    /// The vector will be able to hold at least `capacity` elements without
1068    /// reallocating. This method is allowed to allocate for more elements than
1069    /// `capacity`. If `capacity` is zero, the vector will not allocate.
1070    ///
1071    /// # Errors
1072    ///
1073    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
1074    /// or if the allocator reports allocation failure.
1075    #[inline]
1076    #[unstable(feature = "allocator_api", issue = "32838")]
1077    // #[unstable(feature = "try_with_capacity", issue = "91913")]
1078    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
1079        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
1080    }
1081
1082    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
1083    /// and an allocator.
1084    ///
1085    /// # Safety
1086    ///
1087    /// This is highly unsafe, due to the number of invariants that aren't
1088    /// checked:
1089    ///
1090    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1091    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1092    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1093    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1094    ///   allocated and deallocated with the same layout.)
1095    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1096    ///   to be the same size as the pointer was allocated with. (Because similar to
1097    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1098    /// * `length` needs to be less than or equal to `capacity`.
1099    /// * The first `length` values must be properly initialized values of type `T`.
1100    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1101    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1102    ///   See the safety documentation of [`pointer::offset`].
1103    ///
1104    /// These requirements are always upheld by any `ptr` that has been allocated
1105    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1106    /// upheld.
1107    ///
1108    /// Violating these may cause problems like corrupting the allocator's
1109    /// internal data structures. For example it is **not** safe
1110    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1111    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1112    /// the allocator cares about the alignment, and these two types have different
1113    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1114    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1115    ///
1116    /// The ownership of `ptr` is effectively transferred to the
1117    /// `Vec<T>` which may then deallocate, reallocate or change the
1118    /// contents of memory pointed to by the pointer at will. Ensure
1119    /// that nothing else uses the pointer after calling this
1120    /// function.
1121    ///
1122    /// [`String`]: crate::string::String
1123    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1124    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1125    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1126    ///
1127    /// # Examples
1128    ///
1129    /// ```
1130    /// #![feature(allocator_api)]
1131    ///
1132    /// use std::alloc::System;
1133    ///
1134    /// use std::ptr;
1135    ///
1136    /// let mut v = Vec::with_capacity_in(3, System);
1137    /// v.push(1);
1138    /// v.push(2);
1139    /// v.push(3);
1140    ///
1141    /// // Deconstruct the vector into parts.
1142    /// let (p, len, cap, alloc) = v.into_raw_parts_with_alloc();
1143    ///
1144    /// unsafe {
1145    ///     // Overwrite memory with 4, 5, 6
1146    ///     for i in 0..len {
1147    ///         ptr::write(p.add(i), 4 + i);
1148    ///     }
1149    ///
1150    ///     // Put everything back together into a Vec
1151    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1152    ///     assert_eq!(rebuilt, [4, 5, 6]);
1153    /// }
1154    /// ```
1155    ///
1156    /// Using memory that was allocated elsewhere:
1157    ///
1158    /// ```rust
1159    /// #![feature(allocator_api)]
1160    ///
1161    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1162    ///
1163    /// fn main() {
1164    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1165    ///
1166    ///     let vec = unsafe {
1167    ///         let mem = match Global.allocate(layout) {
1168    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
1169    ///             Err(AllocError) => return,
1170    ///         };
1171    ///
1172    ///         mem.write(1_000_000);
1173    ///
1174    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
1175    ///     };
1176    ///
1177    ///     assert_eq!(vec, &[1_000_000]);
1178    ///     assert_eq!(vec.capacity(), 16);
1179    /// }
1180    /// ```
1181    #[inline]
1182    #[unstable(feature = "allocator_api", issue = "32838")]
1183    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1184        ub_checks::assert_unsafe_precondition!(
1185            check_library_ub,
1186            "Vec::from_raw_parts_in requires that length <= capacity",
1187            (length: usize = length, capacity: usize = capacity) => length <= capacity
1188        );
1189        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1190    }
1191
1192    #[doc(alias = "from_non_null_parts_in")]
1193    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1194    /// and an allocator.
1195    ///
1196    /// # Safety
1197    ///
1198    /// This is highly unsafe, due to the number of invariants that aren't
1199    /// checked:
1200    ///
1201    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1202    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1203    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1204    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1205    ///   allocated and deallocated with the same layout.)
1206    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1207    ///   to be the same size as the pointer was allocated with. (Because similar to
1208    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1209    /// * `length` needs to be less than or equal to `capacity`.
1210    /// * The first `length` values must be properly initialized values of type `T`.
1211    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1212    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1213    ///   See the safety documentation of [`pointer::offset`].
1214    ///
1215    /// These requirements are always upheld by any `ptr` that has been allocated
1216    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1217    /// upheld.
1218    ///
1219    /// Violating these may cause problems like corrupting the allocator's
1220    /// internal data structures. For example it is **not** safe
1221    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1222    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1223    /// the allocator cares about the alignment, and these two types have different
1224    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1225    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1226    ///
1227    /// The ownership of `ptr` is effectively transferred to the
1228    /// `Vec<T>` which may then deallocate, reallocate or change the
1229    /// contents of memory pointed to by the pointer at will. Ensure
1230    /// that nothing else uses the pointer after calling this
1231    /// function.
1232    ///
1233    /// [`String`]: crate::string::String
1234    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1235    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1236    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1237    ///
1238    /// # Examples
1239    ///
1240    /// ```
1241    /// #![feature(allocator_api, box_vec_non_null)]
1242    ///
1243    /// use std::alloc::System;
1244    ///
1245    /// let mut v = Vec::with_capacity_in(3, System);
1246    /// v.push(1);
1247    /// v.push(2);
1248    /// v.push(3);
1249    ///
1250    /// // Deconstruct the vector into parts.
1251    /// let (p, len, cap, alloc) = v.into_parts_with_alloc();
1252    ///
1253    /// unsafe {
1254    ///     // Overwrite memory with 4, 5, 6
1255    ///     for i in 0..len {
1256    ///         p.add(i).write(4 + i);
1257    ///     }
1258    ///
1259    ///     // Put everything back together into a Vec
1260    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1261    ///     assert_eq!(rebuilt, [4, 5, 6]);
1262    /// }
1263    /// ```
1264    ///
1265    /// Using memory that was allocated elsewhere:
1266    ///
1267    /// ```rust
1268    /// #![feature(allocator_api, box_vec_non_null)]
1269    ///
1270    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1271    ///
1272    /// fn main() {
1273    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1274    ///
1275    ///     let vec = unsafe {
1276    ///         let mem = match Global.allocate(layout) {
1277    ///             Ok(mem) => mem.cast::<u32>(),
1278    ///             Err(AllocError) => return,
1279    ///         };
1280    ///
1281    ///         mem.write(1_000_000);
1282    ///
1283    ///         Vec::from_parts_in(mem, 1, 16, Global)
1284    ///     };
1285    ///
1286    ///     assert_eq!(vec, &[1_000_000]);
1287    ///     assert_eq!(vec.capacity(), 16);
1288    /// }
1289    /// ```
1290    #[inline]
1291    #[unstable(feature = "allocator_api", issue = "32838")]
1292    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1293    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1294        ub_checks::assert_unsafe_precondition!(
1295            check_library_ub,
1296            "Vec::from_parts_in requires that length <= capacity",
1297            (length: usize = length, capacity: usize = capacity) => length <= capacity
1298        );
1299        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1300    }
1301
1302    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1303    ///
1304    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1305    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1306    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1307    ///
1308    /// After calling this function, the caller is responsible for the
1309    /// memory previously managed by the `Vec`. The only way to do
1310    /// this is to convert the raw pointer, length, and capacity back
1311    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1312    /// the destructor to perform the cleanup.
1313    ///
1314    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1315    ///
1316    /// # Examples
1317    ///
1318    /// ```
1319    /// #![feature(allocator_api)]
1320    ///
1321    /// use std::alloc::System;
1322    ///
1323    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1324    /// v.push(-1);
1325    /// v.push(0);
1326    /// v.push(1);
1327    ///
1328    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1329    ///
1330    /// let rebuilt = unsafe {
1331    ///     // We can now make changes to the components, such as
1332    ///     // transmuting the raw pointer to a compatible type.
1333    ///     let ptr = ptr as *mut u32;
1334    ///
1335    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1336    /// };
1337    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1338    /// ```
1339    #[must_use = "losing the pointer will leak memory"]
1340    #[unstable(feature = "allocator_api", issue = "32838")]
1341    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1342        let mut me = ManuallyDrop::new(self);
1343        let len = me.len();
1344        let capacity = me.capacity();
1345        let ptr = me.as_mut_ptr();
1346        let alloc = unsafe { ptr::read(me.allocator()) };
1347        (ptr, len, capacity, alloc)
1348    }
1349
1350    #[doc(alias = "into_non_null_parts_with_alloc")]
1351    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1352    ///
1353    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1354    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1355    /// arguments in the same order as the arguments to [`from_parts_in`].
1356    ///
1357    /// After calling this function, the caller is responsible for the
1358    /// memory previously managed by the `Vec`. The only way to do
1359    /// this is to convert the `NonNull` pointer, length, and capacity back
1360    /// into a `Vec` with the [`from_parts_in`] function, allowing
1361    /// the destructor to perform the cleanup.
1362    ///
1363    /// [`from_parts_in`]: Vec::from_parts_in
1364    ///
1365    /// # Examples
1366    ///
1367    /// ```
1368    /// #![feature(allocator_api, box_vec_non_null)]
1369    ///
1370    /// use std::alloc::System;
1371    ///
1372    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1373    /// v.push(-1);
1374    /// v.push(0);
1375    /// v.push(1);
1376    ///
1377    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1378    ///
1379    /// let rebuilt = unsafe {
1380    ///     // We can now make changes to the components, such as
1381    ///     // transmuting the raw pointer to a compatible type.
1382    ///     let ptr = ptr.cast::<u32>();
1383    ///
1384    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1385    /// };
1386    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1387    /// ```
1388    #[must_use = "losing the pointer will leak memory"]
1389    #[unstable(feature = "allocator_api", issue = "32838")]
1390    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1391    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1392        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1393        // SAFETY: A `Vec` always has a non-null pointer.
1394        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1395    }
1396
1397    /// Returns the total number of elements the vector can hold without
1398    /// reallocating.
1399    ///
1400    /// # Examples
1401    ///
1402    /// ```
1403    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1404    /// vec.push(42);
1405    /// assert!(vec.capacity() >= 10);
1406    /// ```
1407    ///
1408    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1409    ///
1410    /// ```
1411    /// #[derive(Clone)]
1412    /// struct ZeroSized;
1413    ///
1414    /// fn main() {
1415    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1416    ///     let v = vec![ZeroSized; 0];
1417    ///     assert_eq!(v.capacity(), usize::MAX);
1418    /// }
1419    /// ```
1420    #[inline]
1421    #[stable(feature = "rust1", since = "1.0.0")]
1422    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1423    pub const fn capacity(&self) -> usize {
1424        self.buf.capacity()
1425    }
1426
1427    /// Reserves capacity for at least `additional` more elements to be inserted
1428    /// in the given `Vec<T>`. The collection may reserve more space to
1429    /// speculatively avoid frequent reallocations. After calling `reserve`,
1430    /// capacity will be greater than or equal to `self.len() + additional`.
1431    /// Does nothing if capacity is already sufficient.
1432    ///
1433    /// # Panics
1434    ///
1435    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1436    ///
1437    /// # Examples
1438    ///
1439    /// ```
1440    /// let mut vec = vec![1];
1441    /// vec.reserve(10);
1442    /// assert!(vec.capacity() >= 11);
1443    /// ```
1444    #[cfg(not(no_global_oom_handling))]
1445    #[stable(feature = "rust1", since = "1.0.0")]
1446    #[rustc_diagnostic_item = "vec_reserve"]
1447    pub fn reserve(&mut self, additional: usize) {
1448        self.buf.reserve(self.len, additional);
1449    }
1450
1451    /// Reserves the minimum capacity for at least `additional` more elements to
1452    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1453    /// deliberately over-allocate to speculatively avoid frequent allocations.
1454    /// After calling `reserve_exact`, capacity will be greater than or equal to
1455    /// `self.len() + additional`. Does nothing if the capacity is already
1456    /// sufficient.
1457    ///
1458    /// Note that the allocator may give the collection more space than it
1459    /// requests. Therefore, capacity can not be relied upon to be precisely
1460    /// minimal. Prefer [`reserve`] if future insertions are expected.
1461    ///
1462    /// [`reserve`]: Vec::reserve
1463    ///
1464    /// # Panics
1465    ///
1466    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1467    ///
1468    /// # Examples
1469    ///
1470    /// ```
1471    /// let mut vec = vec![1];
1472    /// vec.reserve_exact(10);
1473    /// assert!(vec.capacity() >= 11);
1474    /// ```
1475    #[cfg(not(no_global_oom_handling))]
1476    #[stable(feature = "rust1", since = "1.0.0")]
1477    pub fn reserve_exact(&mut self, additional: usize) {
1478        self.buf.reserve_exact(self.len, additional);
1479    }
1480
1481    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1482    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1483    /// frequent reallocations. After calling `try_reserve`, capacity will be
1484    /// greater than or equal to `self.len() + additional` if it returns
1485    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1486    /// preserves the contents even if an error occurs.
1487    ///
1488    /// # Errors
1489    ///
1490    /// If the capacity overflows, or the allocator reports a failure, then an error
1491    /// is returned.
1492    ///
1493    /// # Examples
1494    ///
1495    /// ```
1496    /// use std::collections::TryReserveError;
1497    ///
1498    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1499    ///     let mut output = Vec::new();
1500    ///
1501    ///     // Pre-reserve the memory, exiting if we can't
1502    ///     output.try_reserve(data.len())?;
1503    ///
1504    ///     // Now we know this can't OOM in the middle of our complex work
1505    ///     output.extend(data.iter().map(|&val| {
1506    ///         val * 2 + 5 // very complicated
1507    ///     }));
1508    ///
1509    ///     Ok(output)
1510    /// }
1511    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1512    /// ```
1513    #[stable(feature = "try_reserve", since = "1.57.0")]
1514    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1515        self.buf.try_reserve(self.len, additional)
1516    }
1517
1518    /// Tries to reserve the minimum capacity for at least `additional`
1519    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1520    /// this will not deliberately over-allocate to speculatively avoid frequent
1521    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1522    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1523    /// Does nothing if the capacity is already sufficient.
1524    ///
1525    /// Note that the allocator may give the collection more space than it
1526    /// requests. Therefore, capacity can not be relied upon to be precisely
1527    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1528    ///
1529    /// [`try_reserve`]: Vec::try_reserve
1530    ///
1531    /// # Errors
1532    ///
1533    /// If the capacity overflows, or the allocator reports a failure, then an error
1534    /// is returned.
1535    ///
1536    /// # Examples
1537    ///
1538    /// ```
1539    /// use std::collections::TryReserveError;
1540    ///
1541    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1542    ///     let mut output = Vec::new();
1543    ///
1544    ///     // Pre-reserve the memory, exiting if we can't
1545    ///     output.try_reserve_exact(data.len())?;
1546    ///
1547    ///     // Now we know this can't OOM in the middle of our complex work
1548    ///     output.extend(data.iter().map(|&val| {
1549    ///         val * 2 + 5 // very complicated
1550    ///     }));
1551    ///
1552    ///     Ok(output)
1553    /// }
1554    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1555    /// ```
1556    #[stable(feature = "try_reserve", since = "1.57.0")]
1557    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1558        self.buf.try_reserve_exact(self.len, additional)
1559    }
1560
1561    /// Shrinks the capacity of the vector as much as possible.
1562    ///
1563    /// The behavior of this method depends on the allocator, which may either shrink the vector
1564    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1565    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1566    ///
1567    /// [`with_capacity`]: Vec::with_capacity
1568    ///
1569    /// # Examples
1570    ///
1571    /// ```
1572    /// let mut vec = Vec::with_capacity(10);
1573    /// vec.extend([1, 2, 3]);
1574    /// assert!(vec.capacity() >= 10);
1575    /// vec.shrink_to_fit();
1576    /// assert!(vec.capacity() >= 3);
1577    /// ```
1578    #[cfg(not(no_global_oom_handling))]
1579    #[stable(feature = "rust1", since = "1.0.0")]
1580    #[inline]
1581    pub fn shrink_to_fit(&mut self) {
1582        // The capacity is never less than the length, and there's nothing to do when
1583        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1584        // by only calling it with a greater capacity.
1585        if self.capacity() > self.len {
1586            self.buf.shrink_to_fit(self.len);
1587        }
1588    }
1589
1590    /// Shrinks the capacity of the vector with a lower bound.
1591    ///
1592    /// The capacity will remain at least as large as both the length
1593    /// and the supplied value.
1594    ///
1595    /// If the current capacity is less than the lower limit, this is a no-op.
1596    ///
1597    /// # Examples
1598    ///
1599    /// ```
1600    /// let mut vec = Vec::with_capacity(10);
1601    /// vec.extend([1, 2, 3]);
1602    /// assert!(vec.capacity() >= 10);
1603    /// vec.shrink_to(4);
1604    /// assert!(vec.capacity() >= 4);
1605    /// vec.shrink_to(0);
1606    /// assert!(vec.capacity() >= 3);
1607    /// ```
1608    #[cfg(not(no_global_oom_handling))]
1609    #[stable(feature = "shrink_to", since = "1.56.0")]
1610    pub fn shrink_to(&mut self, min_capacity: usize) {
1611        if self.capacity() > min_capacity {
1612            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1613        }
1614    }
1615
1616    /// Converts the vector into [`Box<[T]>`][owned slice].
1617    ///
1618    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1619    ///
1620    /// [owned slice]: Box
1621    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1622    ///
1623    /// # Examples
1624    ///
1625    /// ```
1626    /// let v = vec![1, 2, 3];
1627    ///
1628    /// let slice = v.into_boxed_slice();
1629    /// ```
1630    ///
1631    /// Any excess capacity is removed:
1632    ///
1633    /// ```
1634    /// let mut vec = Vec::with_capacity(10);
1635    /// vec.extend([1, 2, 3]);
1636    ///
1637    /// assert!(vec.capacity() >= 10);
1638    /// let slice = vec.into_boxed_slice();
1639    /// assert_eq!(slice.into_vec().capacity(), 3);
1640    /// ```
1641    #[cfg(not(no_global_oom_handling))]
1642    #[stable(feature = "rust1", since = "1.0.0")]
1643    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1644        unsafe {
1645            self.shrink_to_fit();
1646            let me = ManuallyDrop::new(self);
1647            let buf = ptr::read(&me.buf);
1648            let len = me.len();
1649            buf.into_box(len).assume_init()
1650        }
1651    }
1652
1653    /// Shortens the vector, keeping the first `len` elements and dropping
1654    /// the rest.
1655    ///
1656    /// If `len` is greater or equal to the vector's current length, this has
1657    /// no effect.
1658    ///
1659    /// The [`drain`] method can emulate `truncate`, but causes the excess
1660    /// elements to be returned instead of dropped.
1661    ///
1662    /// Note that this method has no effect on the allocated capacity
1663    /// of the vector.
1664    ///
1665    /// # Examples
1666    ///
1667    /// Truncating a five element vector to two elements:
1668    ///
1669    /// ```
1670    /// let mut vec = vec![1, 2, 3, 4, 5];
1671    /// vec.truncate(2);
1672    /// assert_eq!(vec, [1, 2]);
1673    /// ```
1674    ///
1675    /// No truncation occurs when `len` is greater than the vector's current
1676    /// length:
1677    ///
1678    /// ```
1679    /// let mut vec = vec![1, 2, 3];
1680    /// vec.truncate(8);
1681    /// assert_eq!(vec, [1, 2, 3]);
1682    /// ```
1683    ///
1684    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1685    /// method.
1686    ///
1687    /// ```
1688    /// let mut vec = vec![1, 2, 3];
1689    /// vec.truncate(0);
1690    /// assert_eq!(vec, []);
1691    /// ```
1692    ///
1693    /// [`clear`]: Vec::clear
1694    /// [`drain`]: Vec::drain
1695    #[stable(feature = "rust1", since = "1.0.0")]
1696    pub fn truncate(&mut self, len: usize) {
1697        // This is safe because:
1698        //
1699        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1700        //   case avoids creating an invalid slice, and
1701        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1702        //   such that no value will be dropped twice in case `drop_in_place`
1703        //   were to panic once (if it panics twice, the program aborts).
1704        unsafe {
1705            // Note: It's intentional that this is `>` and not `>=`.
1706            //       Changing it to `>=` has negative performance
1707            //       implications in some cases. See #78884 for more.
1708            if len > self.len {
1709                return;
1710            }
1711            let remaining_len = self.len - len;
1712            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1713            self.len = len;
1714            ptr::drop_in_place(s);
1715        }
1716    }
1717
1718    /// Extracts a slice containing the entire vector.
1719    ///
1720    /// Equivalent to `&s[..]`.
1721    ///
1722    /// # Examples
1723    ///
1724    /// ```
1725    /// use std::io::{self, Write};
1726    /// let buffer = vec![1, 2, 3, 5, 8];
1727    /// io::sink().write(buffer.as_slice()).unwrap();
1728    /// ```
1729    #[inline]
1730    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1731    #[rustc_diagnostic_item = "vec_as_slice"]
1732    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1733    pub const fn as_slice(&self) -> &[T] {
1734        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1735        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1736        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1737        // "wrap" through overflowing memory addresses.
1738        //
1739        // * Vec API guarantees that self.buf:
1740        //      * contains only properly-initialized items within 0..len
1741        //      * is aligned, contiguous, and valid for `len` reads
1742        //      * obeys size and address-wrapping constraints
1743        //
1744        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1745        //   check ensures that it is not possible to mutably alias `self.buf` within the
1746        //   returned lifetime.
1747        unsafe {
1748            // normally this would use `slice::from_raw_parts`, but it's
1749            // instantiated often enough that avoiding the UB check is worth it
1750            &*core::intrinsics::aggregate_raw_ptr::<*const [T], _, _>(self.as_ptr(), self.len)
1751        }
1752    }
1753
1754    /// Extracts a mutable slice of the entire vector.
1755    ///
1756    /// Equivalent to `&mut s[..]`.
1757    ///
1758    /// # Examples
1759    ///
1760    /// ```
1761    /// use std::io::{self, Read};
1762    /// let mut buffer = vec![0; 3];
1763    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1764    /// ```
1765    #[inline]
1766    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1767    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1768    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1769    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1770        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1771        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1772        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1773        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1774        //
1775        // * Vec API guarantees that self.buf:
1776        //      * contains only properly-initialized items within 0..len
1777        //      * is aligned, contiguous, and valid for `len` reads
1778        //      * obeys size and address-wrapping constraints
1779        //
1780        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1781        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1782        //   within the returned lifetime.
1783        unsafe {
1784            // normally this would use `slice::from_raw_parts_mut`, but it's
1785            // instantiated often enough that avoiding the UB check is worth it
1786            &mut *core::intrinsics::aggregate_raw_ptr::<*mut [T], _, _>(self.as_mut_ptr(), self.len)
1787        }
1788    }
1789
1790    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1791    /// valid for zero sized reads if the vector didn't allocate.
1792    ///
1793    /// The caller must ensure that the vector outlives the pointer this
1794    /// function returns, or else it will end up dangling.
1795    /// Modifying the vector may cause its buffer to be reallocated,
1796    /// which would also make any pointers to it invalid.
1797    ///
1798    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1799    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1800    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1801    ///
1802    /// This method guarantees that for the purpose of the aliasing model, this method
1803    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1804    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1805    /// and [`as_non_null`].
1806    /// Note that calling other methods that materialize mutable references to the slice,
1807    /// or mutable references to specific elements you are planning on accessing through this pointer,
1808    /// as well as writing to those elements, may still invalidate this pointer.
1809    /// See the second example below for how this guarantee can be used.
1810    ///
1811    ///
1812    /// # Examples
1813    ///
1814    /// ```
1815    /// let x = vec![1, 2, 4];
1816    /// let x_ptr = x.as_ptr();
1817    ///
1818    /// unsafe {
1819    ///     for i in 0..x.len() {
1820    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1821    ///     }
1822    /// }
1823    /// ```
1824    ///
1825    /// Due to the aliasing guarantee, the following code is legal:
1826    ///
1827    /// ```rust
1828    /// unsafe {
1829    ///     let mut v = vec![0, 1, 2];
1830    ///     let ptr1 = v.as_ptr();
1831    ///     let _ = ptr1.read();
1832    ///     let ptr2 = v.as_mut_ptr().offset(2);
1833    ///     ptr2.write(2);
1834    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1835    ///     // because it mutated a different element:
1836    ///     let _ = ptr1.read();
1837    /// }
1838    /// ```
1839    ///
1840    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1841    /// [`as_ptr`]: Vec::as_ptr
1842    /// [`as_non_null`]: Vec::as_non_null
1843    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1844    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1845    #[rustc_never_returns_null_ptr]
1846    #[rustc_as_ptr]
1847    #[inline]
1848    pub const fn as_ptr(&self) -> *const T {
1849        // We shadow the slice method of the same name to avoid going through
1850        // `deref`, which creates an intermediate reference.
1851        self.buf.ptr()
1852    }
1853
1854    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1855    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1856    ///
1857    /// The caller must ensure that the vector outlives the pointer this
1858    /// function returns, or else it will end up dangling.
1859    /// Modifying the vector may cause its buffer to be reallocated,
1860    /// which would also make any pointers to it invalid.
1861    ///
1862    /// This method guarantees that for the purpose of the aliasing model, this method
1863    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1864    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1865    /// and [`as_non_null`].
1866    /// Note that calling other methods that materialize references to the slice,
1867    /// or references to specific elements you are planning on accessing through this pointer,
1868    /// may still invalidate this pointer.
1869    /// See the second example below for how this guarantee can be used.
1870    ///
1871    /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1872    /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1873    /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1874    /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1875    /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1876    ///
1877    /// # Examples
1878    ///
1879    /// ```
1880    /// // Allocate vector big enough for 4 elements.
1881    /// let size = 4;
1882    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1883    /// let x_ptr = x.as_mut_ptr();
1884    ///
1885    /// // Initialize elements via raw pointer writes, then set length.
1886    /// unsafe {
1887    ///     for i in 0..size {
1888    ///         *x_ptr.add(i) = i as i32;
1889    ///     }
1890    ///     x.set_len(size);
1891    /// }
1892    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1893    /// ```
1894    ///
1895    /// Due to the aliasing guarantee, the following code is legal:
1896    ///
1897    /// ```rust
1898    /// unsafe {
1899    ///     let mut v = vec![0];
1900    ///     let ptr1 = v.as_mut_ptr();
1901    ///     ptr1.write(1);
1902    ///     let ptr2 = v.as_mut_ptr();
1903    ///     ptr2.write(2);
1904    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1905    ///     ptr1.write(3);
1906    /// }
1907    /// ```
1908    ///
1909    /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1910    ///
1911    /// ```
1912    /// use std::mem::{ManuallyDrop, MaybeUninit};
1913    ///
1914    /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1915    /// let ptr = v.as_mut_ptr();
1916    /// let capacity = v.capacity();
1917    /// let slice_ptr: *mut [MaybeUninit<i32>] =
1918    ///     std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1919    /// drop(unsafe { Box::from_raw(slice_ptr) });
1920    /// ```
1921    ///
1922    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1923    /// [`as_ptr`]: Vec::as_ptr
1924    /// [`as_non_null`]: Vec::as_non_null
1925    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1926    /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1927    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1928    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1929    #[rustc_never_returns_null_ptr]
1930    #[rustc_as_ptr]
1931    #[inline]
1932    pub const fn as_mut_ptr(&mut self) -> *mut T {
1933        // We shadow the slice method of the same name to avoid going through
1934        // `deref_mut`, which creates an intermediate reference.
1935        self.buf.ptr()
1936    }
1937
1938    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1939    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1940    ///
1941    /// The caller must ensure that the vector outlives the pointer this
1942    /// function returns, or else it will end up dangling.
1943    /// Modifying the vector may cause its buffer to be reallocated,
1944    /// which would also make any pointers to it invalid.
1945    ///
1946    /// This method guarantees that for the purpose of the aliasing model, this method
1947    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1948    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1949    /// and [`as_non_null`].
1950    /// Note that calling other methods that materialize references to the slice,
1951    /// or references to specific elements you are planning on accessing through this pointer,
1952    /// may still invalidate this pointer.
1953    /// See the second example below for how this guarantee can be used.
1954    ///
1955    /// # Examples
1956    ///
1957    /// ```
1958    /// #![feature(box_vec_non_null)]
1959    ///
1960    /// // Allocate vector big enough for 4 elements.
1961    /// let size = 4;
1962    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1963    /// let x_ptr = x.as_non_null();
1964    ///
1965    /// // Initialize elements via raw pointer writes, then set length.
1966    /// unsafe {
1967    ///     for i in 0..size {
1968    ///         x_ptr.add(i).write(i as i32);
1969    ///     }
1970    ///     x.set_len(size);
1971    /// }
1972    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1973    /// ```
1974    ///
1975    /// Due to the aliasing guarantee, the following code is legal:
1976    ///
1977    /// ```rust
1978    /// #![feature(box_vec_non_null)]
1979    ///
1980    /// unsafe {
1981    ///     let mut v = vec![0];
1982    ///     let ptr1 = v.as_non_null();
1983    ///     ptr1.write(1);
1984    ///     let ptr2 = v.as_non_null();
1985    ///     ptr2.write(2);
1986    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1987    ///     ptr1.write(3);
1988    /// }
1989    /// ```
1990    ///
1991    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1992    /// [`as_ptr`]: Vec::as_ptr
1993    /// [`as_non_null`]: Vec::as_non_null
1994    #[unstable(feature = "box_vec_non_null", issue = "130364")]
1995    #[rustc_const_unstable(feature = "box_vec_non_null", issue = "130364")]
1996    #[inline]
1997    pub const fn as_non_null(&mut self) -> NonNull<T> {
1998        self.buf.non_null()
1999    }
2000
2001    /// Returns a reference to the underlying allocator.
2002    #[unstable(feature = "allocator_api", issue = "32838")]
2003    #[inline]
2004    pub fn allocator(&self) -> &A {
2005        self.buf.allocator()
2006    }
2007
2008    /// Forces the length of the vector to `new_len`.
2009    ///
2010    /// This is a low-level operation that maintains none of the normal
2011    /// invariants of the type. Normally changing the length of a vector
2012    /// is done using one of the safe operations instead, such as
2013    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
2014    ///
2015    /// [`truncate`]: Vec::truncate
2016    /// [`resize`]: Vec::resize
2017    /// [`extend`]: Extend::extend
2018    /// [`clear`]: Vec::clear
2019    ///
2020    /// # Safety
2021    ///
2022    /// - `new_len` must be less than or equal to [`capacity()`].
2023    /// - The elements at `old_len..new_len` must be initialized.
2024    ///
2025    /// [`capacity()`]: Vec::capacity
2026    ///
2027    /// # Examples
2028    ///
2029    /// See [`spare_capacity_mut()`] for an example with safe
2030    /// initialization of capacity elements and use of this method.
2031    ///
2032    /// `set_len()` can be useful for situations in which the vector
2033    /// is serving as a buffer for other code, particularly over FFI:
2034    ///
2035    /// ```no_run
2036    /// # #![allow(dead_code)]
2037    /// # // This is just a minimal skeleton for the doc example;
2038    /// # // don't use this as a starting point for a real library.
2039    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
2040    /// # const Z_OK: i32 = 0;
2041    /// # unsafe extern "C" {
2042    /// #     fn deflateGetDictionary(
2043    /// #         strm: *mut std::ffi::c_void,
2044    /// #         dictionary: *mut u8,
2045    /// #         dictLength: *mut usize,
2046    /// #     ) -> i32;
2047    /// # }
2048    /// # impl StreamWrapper {
2049    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
2050    ///     // Per the FFI method's docs, "32768 bytes is always enough".
2051    ///     let mut dict = Vec::with_capacity(32_768);
2052    ///     let mut dict_length = 0;
2053    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
2054    ///     // 1. `dict_length` elements were initialized.
2055    ///     // 2. `dict_length` <= the capacity (32_768)
2056    ///     // which makes `set_len` safe to call.
2057    ///     unsafe {
2058    ///         // Make the FFI call...
2059    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
2060    ///         if r == Z_OK {
2061    ///             // ...and update the length to what was initialized.
2062    ///             dict.set_len(dict_length);
2063    ///             Some(dict)
2064    ///         } else {
2065    ///             None
2066    ///         }
2067    ///     }
2068    /// }
2069    /// # }
2070    /// ```
2071    ///
2072    /// While the following example is sound, there is a memory leak since
2073    /// the inner vectors were not freed prior to the `set_len` call:
2074    ///
2075    /// ```
2076    /// let mut vec = vec![vec![1, 0, 0],
2077    ///                    vec![0, 1, 0],
2078    ///                    vec![0, 0, 1]];
2079    /// // SAFETY:
2080    /// // 1. `old_len..0` is empty so no elements need to be initialized.
2081    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
2082    /// unsafe {
2083    ///     vec.set_len(0);
2084    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
2085    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2086    /// #   vec.set_len(3);
2087    /// }
2088    /// ```
2089    ///
2090    /// Normally, here, one would use [`clear`] instead to correctly drop
2091    /// the contents and thus not leak memory.
2092    ///
2093    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
2094    #[inline]
2095    #[stable(feature = "rust1", since = "1.0.0")]
2096    pub unsafe fn set_len(&mut self, new_len: usize) {
2097        ub_checks::assert_unsafe_precondition!(
2098            check_library_ub,
2099            "Vec::set_len requires that new_len <= capacity()",
2100            (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
2101        );
2102
2103        self.len = new_len;
2104    }
2105
2106    /// Removes an element from the vector and returns it.
2107    ///
2108    /// The removed element is replaced by the last element of the vector.
2109    ///
2110    /// This does not preserve ordering of the remaining elements, but is *O*(1).
2111    /// If you need to preserve the element order, use [`remove`] instead.
2112    ///
2113    /// [`remove`]: Vec::remove
2114    ///
2115    /// # Panics
2116    ///
2117    /// Panics if `index` is out of bounds.
2118    ///
2119    /// # Examples
2120    ///
2121    /// ```
2122    /// let mut v = vec!["foo", "bar", "baz", "qux"];
2123    ///
2124    /// assert_eq!(v.swap_remove(1), "bar");
2125    /// assert_eq!(v, ["foo", "qux", "baz"]);
2126    ///
2127    /// assert_eq!(v.swap_remove(0), "foo");
2128    /// assert_eq!(v, ["baz", "qux"]);
2129    /// ```
2130    #[inline]
2131    #[stable(feature = "rust1", since = "1.0.0")]
2132    pub fn swap_remove(&mut self, index: usize) -> T {
2133        #[cold]
2134        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2135        #[optimize(size)]
2136        fn assert_failed(index: usize, len: usize) -> ! {
2137            panic!("swap_remove index (is {index}) should be < len (is {len})");
2138        }
2139
2140        let len = self.len();
2141        if index >= len {
2142            assert_failed(index, len);
2143        }
2144        unsafe {
2145            // We replace self[index] with the last element. Note that if the
2146            // bounds check above succeeds there must be a last element (which
2147            // can be self[index] itself).
2148            let value = ptr::read(self.as_ptr().add(index));
2149            let base_ptr = self.as_mut_ptr();
2150            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2151            self.set_len(len - 1);
2152            value
2153        }
2154    }
2155
2156    /// Inserts an element at position `index` within the vector, shifting all
2157    /// elements after it to the right.
2158    ///
2159    /// # Panics
2160    ///
2161    /// Panics if `index > len`.
2162    ///
2163    /// # Examples
2164    ///
2165    /// ```
2166    /// let mut vec = vec!['a', 'b', 'c'];
2167    /// vec.insert(1, 'd');
2168    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2169    /// vec.insert(4, 'e');
2170    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2171    /// ```
2172    ///
2173    /// # Time complexity
2174    ///
2175    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2176    /// shifted to the right. In the worst case, all elements are shifted when
2177    /// the insertion index is 0.
2178    #[cfg(not(no_global_oom_handling))]
2179    #[stable(feature = "rust1", since = "1.0.0")]
2180    #[track_caller]
2181    pub fn insert(&mut self, index: usize, element: T) {
2182        let _ = self.insert_mut(index, element);
2183    }
2184
2185    /// Inserts an element at position `index` within the vector, shifting all
2186    /// elements after it to the right, and returning a reference to the new
2187    /// element.
2188    ///
2189    /// # Panics
2190    ///
2191    /// Panics if `index > len`.
2192    ///
2193    /// # Examples
2194    ///
2195    /// ```
2196    /// let mut vec = vec![1, 3, 5, 9];
2197    /// let x = vec.insert_mut(3, 6);
2198    /// *x += 1;
2199    /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2200    /// ```
2201    ///
2202    /// # Time complexity
2203    ///
2204    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2205    /// shifted to the right. In the worst case, all elements are shifted when
2206    /// the insertion index is 0.
2207    #[cfg(not(no_global_oom_handling))]
2208    #[inline]
2209    #[stable(feature = "push_mut", since = "CURRENT_RUSTC_VERSION")]
2210    #[track_caller]
2211    #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2212    pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2213        #[cold]
2214        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2215        #[track_caller]
2216        #[optimize(size)]
2217        fn assert_failed(index: usize, len: usize) -> ! {
2218            panic!("insertion index (is {index}) should be <= len (is {len})");
2219        }
2220
2221        let len = self.len();
2222        if index > len {
2223            assert_failed(index, len);
2224        }
2225
2226        // space for the new element
2227        if len == self.buf.capacity() {
2228            self.buf.grow_one();
2229        }
2230
2231        unsafe {
2232            // infallible
2233            // The spot to put the new value
2234            let p = self.as_mut_ptr().add(index);
2235            {
2236                if index < len {
2237                    // Shift everything over to make space. (Duplicating the
2238                    // `index`th element into two consecutive places.)
2239                    ptr::copy(p, p.add(1), len - index);
2240                }
2241                // Write it in, overwriting the first copy of the `index`th
2242                // element.
2243                ptr::write(p, element);
2244            }
2245            self.set_len(len + 1);
2246            &mut *p
2247        }
2248    }
2249
2250    /// Removes and returns the element at position `index` within the vector,
2251    /// shifting all elements after it to the left.
2252    ///
2253    /// Note: Because this shifts over the remaining elements, it has a
2254    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2255    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2256    /// elements from the beginning of the `Vec`, consider using
2257    /// [`VecDeque::pop_front`] instead.
2258    ///
2259    /// [`swap_remove`]: Vec::swap_remove
2260    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2261    ///
2262    /// # Panics
2263    ///
2264    /// Panics if `index` is out of bounds.
2265    ///
2266    /// # Examples
2267    ///
2268    /// ```
2269    /// let mut v = vec!['a', 'b', 'c'];
2270    /// assert_eq!(v.remove(1), 'b');
2271    /// assert_eq!(v, ['a', 'c']);
2272    /// ```
2273    #[stable(feature = "rust1", since = "1.0.0")]
2274    #[track_caller]
2275    #[rustc_confusables("delete", "take")]
2276    pub fn remove(&mut self, index: usize) -> T {
2277        #[cold]
2278        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2279        #[track_caller]
2280        #[optimize(size)]
2281        fn assert_failed(index: usize, len: usize) -> ! {
2282            panic!("removal index (is {index}) should be < len (is {len})");
2283        }
2284
2285        match self.try_remove(index) {
2286            Some(elem) => elem,
2287            None => assert_failed(index, self.len()),
2288        }
2289    }
2290
2291    /// Remove and return the element at position `index` within the vector,
2292    /// shifting all elements after it to the left, or [`None`] if it does not
2293    /// exist.
2294    ///
2295    /// Note: Because this shifts over the remaining elements, it has a
2296    /// worst-case performance of *O*(*n*). If you'd like to remove
2297    /// elements from the beginning of the `Vec`, consider using
2298    /// [`VecDeque::pop_front`] instead.
2299    ///
2300    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2301    ///
2302    /// # Examples
2303    ///
2304    /// ```
2305    /// #![feature(vec_try_remove)]
2306    /// let mut v = vec![1, 2, 3];
2307    /// assert_eq!(v.try_remove(0), Some(1));
2308    /// assert_eq!(v.try_remove(2), None);
2309    /// ```
2310    #[unstable(feature = "vec_try_remove", issue = "146954")]
2311    #[rustc_confusables("delete", "take", "remove")]
2312    pub fn try_remove(&mut self, index: usize) -> Option<T> {
2313        let len = self.len();
2314        if index >= len {
2315            return None;
2316        }
2317        unsafe {
2318            // infallible
2319            let ret;
2320            {
2321                // the place we are taking from.
2322                let ptr = self.as_mut_ptr().add(index);
2323                // copy it out, unsafely having a copy of the value on
2324                // the stack and in the vector at the same time.
2325                ret = ptr::read(ptr);
2326
2327                // Shift everything down to fill in that spot.
2328                ptr::copy(ptr.add(1), ptr, len - index - 1);
2329            }
2330            self.set_len(len - 1);
2331            Some(ret)
2332        }
2333    }
2334
2335    /// Retains only the elements specified by the predicate.
2336    ///
2337    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2338    /// This method operates in place, visiting each element exactly once in the
2339    /// original order, and preserves the order of the retained elements.
2340    ///
2341    /// # Examples
2342    ///
2343    /// ```
2344    /// let mut vec = vec![1, 2, 3, 4];
2345    /// vec.retain(|&x| x % 2 == 0);
2346    /// assert_eq!(vec, [2, 4]);
2347    /// ```
2348    ///
2349    /// Because the elements are visited exactly once in the original order,
2350    /// external state may be used to decide which elements to keep.
2351    ///
2352    /// ```
2353    /// let mut vec = vec![1, 2, 3, 4, 5];
2354    /// let keep = [false, true, true, false, true];
2355    /// let mut iter = keep.iter();
2356    /// vec.retain(|_| *iter.next().unwrap());
2357    /// assert_eq!(vec, [2, 3, 5]);
2358    /// ```
2359    #[stable(feature = "rust1", since = "1.0.0")]
2360    pub fn retain<F>(&mut self, mut f: F)
2361    where
2362        F: FnMut(&T) -> bool,
2363    {
2364        self.retain_mut(|elem| f(elem));
2365    }
2366
2367    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2368    ///
2369    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2370    /// This method operates in place, visiting each element exactly once in the
2371    /// original order, and preserves the order of the retained elements.
2372    ///
2373    /// # Examples
2374    ///
2375    /// ```
2376    /// let mut vec = vec![1, 2, 3, 4];
2377    /// vec.retain_mut(|x| if *x <= 3 {
2378    ///     *x += 1;
2379    ///     true
2380    /// } else {
2381    ///     false
2382    /// });
2383    /// assert_eq!(vec, [2, 3, 4]);
2384    /// ```
2385    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2386    pub fn retain_mut<F>(&mut self, mut f: F)
2387    where
2388        F: FnMut(&mut T) -> bool,
2389    {
2390        let original_len = self.len();
2391
2392        if original_len == 0 {
2393            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2394            return;
2395        }
2396
2397        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2398        //      |            ^- write                ^- read             |
2399        //      |<-              original_len                          ->|
2400        // Kept: Elements which predicate returns true on.
2401        // Hole: Moved or dropped element slot.
2402        // Unchecked: Unchecked valid elements.
2403        //
2404        // This drop guard will be invoked when predicate or `drop` of element panicked.
2405        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2406        // In cases when predicate and `drop` never panick, it will be optimized out.
2407        struct PanicGuard<'a, T, A: Allocator> {
2408            v: &'a mut Vec<T, A>,
2409            read: usize,
2410            write: usize,
2411            original_len: usize,
2412        }
2413
2414        impl<T, A: Allocator> Drop for PanicGuard<'_, T, A> {
2415            #[cold]
2416            fn drop(&mut self) {
2417                let remaining = self.original_len - self.read;
2418                // SAFETY: Trailing unchecked items must be valid since we never touch them.
2419                unsafe {
2420                    ptr::copy(
2421                        self.v.as_ptr().add(self.read),
2422                        self.v.as_mut_ptr().add(self.write),
2423                        remaining,
2424                    );
2425                }
2426                // SAFETY: After filling holes, all items are in contiguous memory.
2427                unsafe {
2428                    self.v.set_len(self.write + remaining);
2429                }
2430            }
2431        }
2432
2433        let mut read = 0;
2434        loop {
2435            // SAFETY: read < original_len
2436            let cur = unsafe { self.get_unchecked_mut(read) };
2437            if hint::unlikely(!f(cur)) {
2438                break;
2439            }
2440            read += 1;
2441            if read == original_len {
2442                // All elements are kept, return early.
2443                return;
2444            }
2445        }
2446
2447        // Critical section starts here and at least one element is going to be removed.
2448        // Advance `g.read` early to avoid double drop if `drop_in_place` panicked.
2449        let mut g = PanicGuard { v: self, read: read + 1, write: read, original_len };
2450        // SAFETY: previous `read` is always less than original_len.
2451        unsafe { ptr::drop_in_place(&mut *g.v.as_mut_ptr().add(read)) };
2452
2453        while g.read < g.original_len {
2454            // SAFETY: `read` is always less than original_len.
2455            let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.read) };
2456            if !f(cur) {
2457                // Advance `read` early to avoid double drop if `drop_in_place` panicked.
2458                g.read += 1;
2459                // SAFETY: We never touch this element again after dropped.
2460                unsafe { ptr::drop_in_place(cur) };
2461            } else {
2462                // SAFETY: `read` > `write`, so the slots don't overlap.
2463                // We use copy for move, and never touch the source element again.
2464                unsafe {
2465                    let hole = g.v.as_mut_ptr().add(g.write);
2466                    ptr::copy_nonoverlapping(cur, hole, 1);
2467                }
2468                g.write += 1;
2469                g.read += 1;
2470            }
2471        }
2472
2473        // We are leaving the critical section and no panic happened,
2474        // Commit the length change and forget the guard.
2475        // SAFETY: `write` is always less than or equal to original_len.
2476        unsafe { g.v.set_len(g.write) };
2477        mem::forget(g);
2478    }
2479
2480    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2481    /// key.
2482    ///
2483    /// If the vector is sorted, this removes all duplicates.
2484    ///
2485    /// # Examples
2486    ///
2487    /// ```
2488    /// let mut vec = vec![10, 20, 21, 30, 20];
2489    ///
2490    /// vec.dedup_by_key(|i| *i / 10);
2491    ///
2492    /// assert_eq!(vec, [10, 20, 30, 20]);
2493    /// ```
2494    #[stable(feature = "dedup_by", since = "1.16.0")]
2495    #[inline]
2496    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2497    where
2498        F: FnMut(&mut T) -> K,
2499        K: PartialEq,
2500    {
2501        self.dedup_by(|a, b| key(a) == key(b))
2502    }
2503
2504    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2505    /// relation.
2506    ///
2507    /// The `same_bucket` function is passed references to two elements from the vector and
2508    /// must determine if the elements compare equal. The elements are passed in opposite order
2509    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2510    ///
2511    /// If the vector is sorted, this removes all duplicates.
2512    ///
2513    /// # Examples
2514    ///
2515    /// ```
2516    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2517    ///
2518    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2519    ///
2520    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2521    /// ```
2522    #[stable(feature = "dedup_by", since = "1.16.0")]
2523    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2524    where
2525        F: FnMut(&mut T, &mut T) -> bool,
2526    {
2527        let len = self.len();
2528        if len <= 1 {
2529            return;
2530        }
2531
2532        // Check if we ever want to remove anything.
2533        // This allows to use copy_non_overlapping in next cycle.
2534        // And avoids any memory writes if we don't need to remove anything.
2535        let mut first_duplicate_idx: usize = 1;
2536        let start = self.as_mut_ptr();
2537        while first_duplicate_idx != len {
2538            let found_duplicate = unsafe {
2539                // SAFETY: first_duplicate always in range [1..len)
2540                // Note that we start iteration from 1 so we never overflow.
2541                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2542                let current = start.add(first_duplicate_idx);
2543                // We explicitly say in docs that references are reversed.
2544                same_bucket(&mut *current, &mut *prev)
2545            };
2546            if found_duplicate {
2547                break;
2548            }
2549            first_duplicate_idx += 1;
2550        }
2551        // Don't need to remove anything.
2552        // We cannot get bigger than len.
2553        if first_duplicate_idx == len {
2554            return;
2555        }
2556
2557        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2558        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2559            /* Offset of the element we want to check if it is duplicate */
2560            read: usize,
2561
2562            /* Offset of the place where we want to place the non-duplicate
2563             * when we find it. */
2564            write: usize,
2565
2566            /* The Vec that would need correction if `same_bucket` panicked */
2567            vec: &'a mut Vec<T, A>,
2568        }
2569
2570        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2571            fn drop(&mut self) {
2572                /* This code gets executed when `same_bucket` panics */
2573
2574                /* SAFETY: invariant guarantees that `read - write`
2575                 * and `len - read` never overflow and that the copy is always
2576                 * in-bounds. */
2577                unsafe {
2578                    let ptr = self.vec.as_mut_ptr();
2579                    let len = self.vec.len();
2580
2581                    /* How many items were left when `same_bucket` panicked.
2582                     * Basically vec[read..].len() */
2583                    let items_left = len.wrapping_sub(self.read);
2584
2585                    /* Pointer to first item in vec[write..write+items_left] slice */
2586                    let dropped_ptr = ptr.add(self.write);
2587                    /* Pointer to first item in vec[read..] slice */
2588                    let valid_ptr = ptr.add(self.read);
2589
2590                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2591                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2592                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2593
2594                    /* How many items have been already dropped
2595                     * Basically vec[read..write].len() */
2596                    let dropped = self.read.wrapping_sub(self.write);
2597
2598                    self.vec.set_len(len - dropped);
2599                }
2600            }
2601        }
2602
2603        /* Drop items while going through Vec, it should be more efficient than
2604         * doing slice partition_dedup + truncate */
2605
2606        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2607        let mut gap =
2608            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2609        unsafe {
2610            // SAFETY: we checked that first_duplicate_idx in bounds before.
2611            // If drop panics, `gap` would remove this item without drop.
2612            ptr::drop_in_place(start.add(first_duplicate_idx));
2613        }
2614
2615        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2616         * are always in-bounds and read_ptr never aliases prev_ptr */
2617        unsafe {
2618            while gap.read < len {
2619                let read_ptr = start.add(gap.read);
2620                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2621
2622                // We explicitly say in docs that references are reversed.
2623                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2624                if found_duplicate {
2625                    // Increase `gap.read` now since the drop may panic.
2626                    gap.read += 1;
2627                    /* We have found duplicate, drop it in-place */
2628                    ptr::drop_in_place(read_ptr);
2629                } else {
2630                    let write_ptr = start.add(gap.write);
2631
2632                    /* read_ptr cannot be equal to write_ptr because at this point
2633                     * we guaranteed to skip at least one element (before loop starts).
2634                     */
2635                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2636
2637                    /* We have filled that place, so go further */
2638                    gap.write += 1;
2639                    gap.read += 1;
2640                }
2641            }
2642
2643            /* Technically we could let `gap` clean up with its Drop, but
2644             * when `same_bucket` is guaranteed to not panic, this bloats a little
2645             * the codegen, so we just do it manually */
2646            gap.vec.set_len(gap.write);
2647            mem::forget(gap);
2648        }
2649    }
2650
2651    /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2652    /// otherwise an error is returned with the element.
2653    ///
2654    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2655    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2656    ///
2657    /// [`push`]: Vec::push
2658    /// [`reserve`]: Vec::reserve
2659    /// [`try_reserve`]: Vec::try_reserve
2660    ///
2661    /// # Examples
2662    ///
2663    /// A manual, panic-free alternative to [`FromIterator`]:
2664    ///
2665    /// ```
2666    /// #![feature(vec_push_within_capacity)]
2667    ///
2668    /// use std::collections::TryReserveError;
2669    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2670    ///     let mut vec = Vec::new();
2671    ///     for value in iter {
2672    ///         if let Err(value) = vec.push_within_capacity(value) {
2673    ///             vec.try_reserve(1)?;
2674    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2675    ///             let _ = vec.push_within_capacity(value);
2676    ///         }
2677    ///     }
2678    ///     Ok(vec)
2679    /// }
2680    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2681    /// ```
2682    ///
2683    /// # Time complexity
2684    ///
2685    /// Takes *O*(1) time.
2686    #[inline]
2687    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2688    pub fn push_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2689        if self.len == self.buf.capacity() {
2690            return Err(value);
2691        }
2692
2693        unsafe {
2694            let end = self.as_mut_ptr().add(self.len);
2695            ptr::write(end, value);
2696            self.len += 1;
2697
2698            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2699            Ok(&mut *end)
2700        }
2701    }
2702
2703    /// Removes the last element from a vector and returns it, or [`None`] if it
2704    /// is empty.
2705    ///
2706    /// If you'd like to pop the first element, consider using
2707    /// [`VecDeque::pop_front`] instead.
2708    ///
2709    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2710    ///
2711    /// # Examples
2712    ///
2713    /// ```
2714    /// let mut vec = vec![1, 2, 3];
2715    /// assert_eq!(vec.pop(), Some(3));
2716    /// assert_eq!(vec, [1, 2]);
2717    /// ```
2718    ///
2719    /// # Time complexity
2720    ///
2721    /// Takes *O*(1) time.
2722    #[inline]
2723    #[stable(feature = "rust1", since = "1.0.0")]
2724    #[rustc_diagnostic_item = "vec_pop"]
2725    pub fn pop(&mut self) -> Option<T> {
2726        if self.len == 0 {
2727            None
2728        } else {
2729            unsafe {
2730                self.len -= 1;
2731                core::hint::assert_unchecked(self.len < self.capacity());
2732                Some(ptr::read(self.as_ptr().add(self.len())))
2733            }
2734        }
2735    }
2736
2737    /// Removes and returns the last element from a vector if the predicate
2738    /// returns `true`, or [`None`] if the predicate returns false or the vector
2739    /// is empty (the predicate will not be called in that case).
2740    ///
2741    /// # Examples
2742    ///
2743    /// ```
2744    /// let mut vec = vec![1, 2, 3, 4];
2745    /// let pred = |x: &mut i32| *x % 2 == 0;
2746    ///
2747    /// assert_eq!(vec.pop_if(pred), Some(4));
2748    /// assert_eq!(vec, [1, 2, 3]);
2749    /// assert_eq!(vec.pop_if(pred), None);
2750    /// ```
2751    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2752    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2753        let last = self.last_mut()?;
2754        if predicate(last) { self.pop() } else { None }
2755    }
2756
2757    /// Returns a mutable reference to the last item in the vector, or
2758    /// `None` if it is empty.
2759    ///
2760    /// # Examples
2761    ///
2762    /// Basic usage:
2763    ///
2764    /// ```
2765    /// #![feature(vec_peek_mut)]
2766    /// let mut vec = Vec::new();
2767    /// assert!(vec.peek_mut().is_none());
2768    ///
2769    /// vec.push(1);
2770    /// vec.push(5);
2771    /// vec.push(2);
2772    /// assert_eq!(vec.last(), Some(&2));
2773    /// if let Some(mut val) = vec.peek_mut() {
2774    ///     *val = 0;
2775    /// }
2776    /// assert_eq!(vec.last(), Some(&0));
2777    /// ```
2778    #[inline]
2779    #[unstable(feature = "vec_peek_mut", issue = "122742")]
2780    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2781        PeekMut::new(self)
2782    }
2783
2784    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2785    ///
2786    /// # Panics
2787    ///
2788    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2789    ///
2790    /// # Examples
2791    ///
2792    /// ```
2793    /// let mut vec = vec![1, 2, 3];
2794    /// let mut vec2 = vec![4, 5, 6];
2795    /// vec.append(&mut vec2);
2796    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2797    /// assert_eq!(vec2, []);
2798    /// ```
2799    #[cfg(not(no_global_oom_handling))]
2800    #[inline]
2801    #[stable(feature = "append", since = "1.4.0")]
2802    pub fn append(&mut self, other: &mut Self) {
2803        unsafe {
2804            self.append_elements(other.as_slice() as _);
2805            other.set_len(0);
2806        }
2807    }
2808
2809    /// Appends elements to `self` from other buffer.
2810    #[cfg(not(no_global_oom_handling))]
2811    #[inline]
2812    unsafe fn append_elements(&mut self, other: *const [T]) {
2813        let count = other.len();
2814        self.reserve(count);
2815        let len = self.len();
2816        if count > 0 {
2817            unsafe {
2818                ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count)
2819            };
2820        }
2821        self.len += count;
2822    }
2823
2824    /// Removes the subslice indicated by the given range from the vector,
2825    /// returning a double-ended iterator over the removed subslice.
2826    ///
2827    /// If the iterator is dropped before being fully consumed,
2828    /// it drops the remaining removed elements.
2829    ///
2830    /// The returned iterator keeps a mutable borrow on the vector to optimize
2831    /// its implementation.
2832    ///
2833    /// # Panics
2834    ///
2835    /// Panics if the range has `start_bound > end_bound`, or, if the range is
2836    /// bounded on either end and past the length of the vector.
2837    ///
2838    /// # Leaking
2839    ///
2840    /// If the returned iterator goes out of scope without being dropped (due to
2841    /// [`mem::forget`], for example), the vector may have lost and leaked
2842    /// elements arbitrarily, including elements outside the range.
2843    ///
2844    /// # Examples
2845    ///
2846    /// ```
2847    /// let mut v = vec![1, 2, 3];
2848    /// let u: Vec<_> = v.drain(1..).collect();
2849    /// assert_eq!(v, &[1]);
2850    /// assert_eq!(u, &[2, 3]);
2851    ///
2852    /// // A full range clears the vector, like `clear()` does
2853    /// v.drain(..);
2854    /// assert_eq!(v, &[]);
2855    /// ```
2856    #[stable(feature = "drain", since = "1.6.0")]
2857    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2858    where
2859        R: RangeBounds<usize>,
2860    {
2861        // Memory safety
2862        //
2863        // When the Drain is first created, it shortens the length of
2864        // the source vector to make sure no uninitialized or moved-from elements
2865        // are accessible at all if the Drain's destructor never gets to run.
2866        //
2867        // Drain will ptr::read out the values to remove.
2868        // When finished, remaining tail of the vec is copied back to cover
2869        // the hole, and the vector length is restored to the new length.
2870        //
2871        let len = self.len();
2872        let Range { start, end } = slice::range(range, ..len);
2873
2874        unsafe {
2875            // set self.vec length's to start, to be safe in case Drain is leaked
2876            self.set_len(start);
2877            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2878            Drain {
2879                tail_start: end,
2880                tail_len: len - end,
2881                iter: range_slice.iter(),
2882                vec: NonNull::from(self),
2883            }
2884        }
2885    }
2886
2887    /// Clears the vector, removing all values.
2888    ///
2889    /// Note that this method has no effect on the allocated capacity
2890    /// of the vector.
2891    ///
2892    /// # Examples
2893    ///
2894    /// ```
2895    /// let mut v = vec![1, 2, 3];
2896    ///
2897    /// v.clear();
2898    ///
2899    /// assert!(v.is_empty());
2900    /// ```
2901    #[inline]
2902    #[stable(feature = "rust1", since = "1.0.0")]
2903    pub fn clear(&mut self) {
2904        let elems: *mut [T] = self.as_mut_slice();
2905
2906        // SAFETY:
2907        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2908        // - Setting `self.len` before calling `drop_in_place` means that,
2909        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2910        //   do nothing (leaking the rest of the elements) instead of dropping
2911        //   some twice.
2912        unsafe {
2913            self.len = 0;
2914            ptr::drop_in_place(elems);
2915        }
2916    }
2917
2918    /// Returns the number of elements in the vector, also referred to
2919    /// as its 'length'.
2920    ///
2921    /// # Examples
2922    ///
2923    /// ```
2924    /// let a = vec![1, 2, 3];
2925    /// assert_eq!(a.len(), 3);
2926    /// ```
2927    #[inline]
2928    #[stable(feature = "rust1", since = "1.0.0")]
2929    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2930    #[rustc_confusables("length", "size")]
2931    pub const fn len(&self) -> usize {
2932        let len = self.len;
2933
2934        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2935        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2936        // matches the definition of `T::MAX_SLICE_LEN`.
2937        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2938
2939        len
2940    }
2941
2942    /// Returns `true` if the vector contains no elements.
2943    ///
2944    /// # Examples
2945    ///
2946    /// ```
2947    /// let mut v = Vec::new();
2948    /// assert!(v.is_empty());
2949    ///
2950    /// v.push(1);
2951    /// assert!(!v.is_empty());
2952    /// ```
2953    #[stable(feature = "rust1", since = "1.0.0")]
2954    #[rustc_diagnostic_item = "vec_is_empty"]
2955    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2956    pub const fn is_empty(&self) -> bool {
2957        self.len() == 0
2958    }
2959
2960    /// Splits the collection into two at the given index.
2961    ///
2962    /// Returns a newly allocated vector containing the elements in the range
2963    /// `[at, len)`. After the call, the original vector will be left containing
2964    /// the elements `[0, at)` with its previous capacity unchanged.
2965    ///
2966    /// - If you want to take ownership of the entire contents and capacity of
2967    ///   the vector, see [`mem::take`] or [`mem::replace`].
2968    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2969    /// - If you want to take ownership of an arbitrary subslice, or you don't
2970    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2971    ///
2972    /// # Panics
2973    ///
2974    /// Panics if `at > len`.
2975    ///
2976    /// # Examples
2977    ///
2978    /// ```
2979    /// let mut vec = vec!['a', 'b', 'c'];
2980    /// let vec2 = vec.split_off(1);
2981    /// assert_eq!(vec, ['a']);
2982    /// assert_eq!(vec2, ['b', 'c']);
2983    /// ```
2984    #[cfg(not(no_global_oom_handling))]
2985    #[inline]
2986    #[must_use = "use `.truncate()` if you don't need the other half"]
2987    #[stable(feature = "split_off", since = "1.4.0")]
2988    #[track_caller]
2989    pub fn split_off(&mut self, at: usize) -> Self
2990    where
2991        A: Clone,
2992    {
2993        #[cold]
2994        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2995        #[track_caller]
2996        #[optimize(size)]
2997        fn assert_failed(at: usize, len: usize) -> ! {
2998            panic!("`at` split index (is {at}) should be <= len (is {len})");
2999        }
3000
3001        if at > self.len() {
3002            assert_failed(at, self.len());
3003        }
3004
3005        let other_len = self.len - at;
3006        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
3007
3008        // Unsafely `set_len` and copy items to `other`.
3009        unsafe {
3010            self.set_len(at);
3011            other.set_len(other_len);
3012
3013            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
3014        }
3015        other
3016    }
3017
3018    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3019    ///
3020    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3021    /// difference, with each additional slot filled with the result of
3022    /// calling the closure `f`. The return values from `f` will end up
3023    /// in the `Vec` in the order they have been generated.
3024    ///
3025    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3026    ///
3027    /// This method uses a closure to create new values on every push. If
3028    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
3029    /// want to use the [`Default`] trait to generate values, you can
3030    /// pass [`Default::default`] as the second argument.
3031    ///
3032    /// # Panics
3033    ///
3034    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3035    ///
3036    /// # Examples
3037    ///
3038    /// ```
3039    /// let mut vec = vec![1, 2, 3];
3040    /// vec.resize_with(5, Default::default);
3041    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
3042    ///
3043    /// let mut vec = vec![];
3044    /// let mut p = 1;
3045    /// vec.resize_with(4, || { p *= 2; p });
3046    /// assert_eq!(vec, [2, 4, 8, 16]);
3047    /// ```
3048    #[cfg(not(no_global_oom_handling))]
3049    #[stable(feature = "vec_resize_with", since = "1.33.0")]
3050    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
3051    where
3052        F: FnMut() -> T,
3053    {
3054        let len = self.len();
3055        if new_len > len {
3056            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
3057        } else {
3058            self.truncate(new_len);
3059        }
3060    }
3061
3062    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
3063    /// `&'a mut [T]`.
3064    ///
3065    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
3066    /// has only static references, or none at all, then this may be chosen to be
3067    /// `'static`.
3068    ///
3069    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
3070    /// so the leaked allocation may include unused capacity that is not part
3071    /// of the returned slice.
3072    ///
3073    /// This function is mainly useful for data that lives for the remainder of
3074    /// the program's life. Dropping the returned reference will cause a memory
3075    /// leak.
3076    ///
3077    /// # Examples
3078    ///
3079    /// Simple usage:
3080    ///
3081    /// ```
3082    /// let x = vec![1, 2, 3];
3083    /// let static_ref: &'static mut [usize] = x.leak();
3084    /// static_ref[0] += 1;
3085    /// assert_eq!(static_ref, &[2, 2, 3]);
3086    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3087    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3088    /// # drop(unsafe { Box::from_raw(static_ref) });
3089    /// ```
3090    #[stable(feature = "vec_leak", since = "1.47.0")]
3091    #[inline]
3092    pub fn leak<'a>(self) -> &'a mut [T]
3093    where
3094        A: 'a,
3095    {
3096        let mut me = ManuallyDrop::new(self);
3097        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3098    }
3099
3100    /// Returns the remaining spare capacity of the vector as a slice of
3101    /// `MaybeUninit<T>`.
3102    ///
3103    /// The returned slice can be used to fill the vector with data (e.g. by
3104    /// reading from a file) before marking the data as initialized using the
3105    /// [`set_len`] method.
3106    ///
3107    /// [`set_len`]: Vec::set_len
3108    ///
3109    /// # Examples
3110    ///
3111    /// ```
3112    /// // Allocate vector big enough for 10 elements.
3113    /// let mut v = Vec::with_capacity(10);
3114    ///
3115    /// // Fill in the first 3 elements.
3116    /// let uninit = v.spare_capacity_mut();
3117    /// uninit[0].write(0);
3118    /// uninit[1].write(1);
3119    /// uninit[2].write(2);
3120    ///
3121    /// // Mark the first 3 elements of the vector as being initialized.
3122    /// unsafe {
3123    ///     v.set_len(3);
3124    /// }
3125    ///
3126    /// assert_eq!(&v, &[0, 1, 2]);
3127    /// ```
3128    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3129    #[inline]
3130    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3131        // Note:
3132        // This method is not implemented in terms of `split_at_spare_mut`,
3133        // to prevent invalidation of pointers to the buffer.
3134        unsafe {
3135            slice::from_raw_parts_mut(
3136                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3137                self.buf.capacity() - self.len,
3138            )
3139        }
3140    }
3141
3142    /// Returns vector content as a slice of `T`, along with the remaining spare
3143    /// capacity of the vector as a slice of `MaybeUninit<T>`.
3144    ///
3145    /// The returned spare capacity slice can be used to fill the vector with data
3146    /// (e.g. by reading from a file) before marking the data as initialized using
3147    /// the [`set_len`] method.
3148    ///
3149    /// [`set_len`]: Vec::set_len
3150    ///
3151    /// Note that this is a low-level API, which should be used with care for
3152    /// optimization purposes. If you need to append data to a `Vec`
3153    /// you can use [`push`], [`extend`], [`extend_from_slice`],
3154    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3155    /// [`resize_with`], depending on your exact needs.
3156    ///
3157    /// [`push`]: Vec::push
3158    /// [`extend`]: Vec::extend
3159    /// [`extend_from_slice`]: Vec::extend_from_slice
3160    /// [`extend_from_within`]: Vec::extend_from_within
3161    /// [`insert`]: Vec::insert
3162    /// [`append`]: Vec::append
3163    /// [`resize`]: Vec::resize
3164    /// [`resize_with`]: Vec::resize_with
3165    ///
3166    /// # Examples
3167    ///
3168    /// ```
3169    /// #![feature(vec_split_at_spare)]
3170    ///
3171    /// let mut v = vec![1, 1, 2];
3172    ///
3173    /// // Reserve additional space big enough for 10 elements.
3174    /// v.reserve(10);
3175    ///
3176    /// let (init, uninit) = v.split_at_spare_mut();
3177    /// let sum = init.iter().copied().sum::<u32>();
3178    ///
3179    /// // Fill in the next 4 elements.
3180    /// uninit[0].write(sum);
3181    /// uninit[1].write(sum * 2);
3182    /// uninit[2].write(sum * 3);
3183    /// uninit[3].write(sum * 4);
3184    ///
3185    /// // Mark the 4 elements of the vector as being initialized.
3186    /// unsafe {
3187    ///     let len = v.len();
3188    ///     v.set_len(len + 4);
3189    /// }
3190    ///
3191    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3192    /// ```
3193    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3194    #[inline]
3195    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3196        // SAFETY:
3197        // - len is ignored and so never changed
3198        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3199        (init, spare)
3200    }
3201
3202    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3203    ///
3204    /// This method provides unique access to all vec parts at once in `extend_from_within`.
3205    unsafe fn split_at_spare_mut_with_len(
3206        &mut self,
3207    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3208        let ptr = self.as_mut_ptr();
3209        // SAFETY:
3210        // - `ptr` is guaranteed to be valid for `self.len` elements
3211        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3212        // uninitialized
3213        let spare_ptr = unsafe { ptr.add(self.len) };
3214        let spare_ptr = spare_ptr.cast_uninit();
3215        let spare_len = self.buf.capacity() - self.len;
3216
3217        // SAFETY:
3218        // - `ptr` is guaranteed to be valid for `self.len` elements
3219        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3220        unsafe {
3221            let initialized = slice::from_raw_parts_mut(ptr, self.len);
3222            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3223
3224            (initialized, spare, &mut self.len)
3225        }
3226    }
3227
3228    /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3229    /// elements in the remainder. `N` must be greater than zero.
3230    ///
3231    /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3232    /// nearest multiple with a reallocation or deallocation.
3233    ///
3234    /// This function can be used to reverse [`Vec::into_flattened`].
3235    ///
3236    /// # Examples
3237    ///
3238    /// ```
3239    /// #![feature(vec_into_chunks)]
3240    ///
3241    /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3242    /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3243    ///
3244    /// let vec = vec![0, 1, 2, 3];
3245    /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3246    /// assert!(chunks.is_empty());
3247    ///
3248    /// let flat = vec![0; 8 * 8 * 8];
3249    /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3250    /// assert_eq!(reshaped.len(), 1);
3251    /// ```
3252    #[cfg(not(no_global_oom_handling))]
3253    #[unstable(feature = "vec_into_chunks", issue = "142137")]
3254    pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3255        const {
3256            assert!(N != 0, "chunk size must be greater than zero");
3257        }
3258
3259        let (len, cap) = (self.len(), self.capacity());
3260
3261        let len_remainder = len % N;
3262        if len_remainder != 0 {
3263            self.truncate(len - len_remainder);
3264        }
3265
3266        let cap_remainder = cap % N;
3267        if !T::IS_ZST && cap_remainder != 0 {
3268            self.buf.shrink_to_fit(cap - cap_remainder);
3269        }
3270
3271        let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3272
3273        // SAFETY:
3274        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3275        // - `[T; N]` has the same alignment as `T`
3276        // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3277        // - `len / N <= cap / N` because `len <= cap`
3278        // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3279        // - `cap / N` fits the size of the allocated memory after shrinking
3280        unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3281    }
3282
3283    /// This clears out this `Vec` and recycles the allocation into a new `Vec`.
3284    /// The item type of the resulting `Vec` needs to have the same size and
3285    /// alignment as the item type of the original `Vec`.
3286    ///
3287    /// # Examples
3288    ///
3289    ///  ```
3290    /// #![feature(vec_recycle, transmutability)]
3291    /// let a: Vec<u8> = vec![0; 100];
3292    /// let capacity = a.capacity();
3293    /// let addr = a.as_ptr().addr();
3294    /// let b: Vec<i8> = a.recycle();
3295    /// assert_eq!(b.len(), 0);
3296    /// assert_eq!(b.capacity(), capacity);
3297    /// assert_eq!(b.as_ptr().addr(), addr);
3298    /// ```
3299    ///
3300    /// The `Recyclable` bound prevents this method from being called when `T` and `U` have different sizes; e.g.:
3301    ///
3302    ///  ```compile_fail,E0277
3303    /// #![feature(vec_recycle, transmutability)]
3304    /// let vec: Vec<[u8; 2]> = Vec::new();
3305    /// let _: Vec<[u8; 1]> = vec.recycle();
3306    /// ```
3307    /// ...or different alignments:
3308    ///
3309    ///  ```compile_fail,E0277
3310    /// #![feature(vec_recycle, transmutability)]
3311    /// let vec: Vec<[u16; 0]> = Vec::new();
3312    /// let _: Vec<[u8; 0]> = vec.recycle();
3313    /// ```
3314    ///
3315    /// However, due to temporary implementation limitations of `Recyclable`,
3316    /// this method is not yet callable when `T` or `U` are slices, trait objects,
3317    /// or other exotic types; e.g.:
3318    ///
3319    /// ```compile_fail,E0277
3320    /// #![feature(vec_recycle, transmutability)]
3321    /// # let inputs = ["a b c", "d e f"];
3322    /// # fn process(_: &[&str]) {}
3323    /// let mut storage: Vec<&[&str]> = Vec::new();
3324    ///
3325    /// for input in inputs {
3326    ///     let mut buffer: Vec<&str> = storage.recycle();
3327    ///     buffer.extend(input.split(" "));
3328    ///     process(&buffer);
3329    ///     storage = buffer.recycle();
3330    /// }
3331    /// ```
3332    #[unstable(feature = "vec_recycle", issue = "148227")]
3333    #[expect(private_bounds)]
3334    pub fn recycle<U>(mut self) -> Vec<U, A>
3335    where
3336        U: Recyclable<T>,
3337    {
3338        self.clear();
3339        const {
3340            // FIXME(const-hack, 146097): compare `Layout`s
3341            assert!(size_of::<T>() == size_of::<U>());
3342            assert!(align_of::<T>() == align_of::<U>());
3343        };
3344        let (ptr, length, capacity, alloc) = self.into_parts_with_alloc();
3345        debug_assert_eq!(length, 0);
3346        // SAFETY:
3347        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3348        // - `T` & `U` have the same layout, so `capacity` does not need to be changed and we can safely use `alloc.dealloc` later
3349        // - the original vector was cleared, so there is no problem with "transmuting" the stored values
3350        unsafe { Vec::from_parts_in(ptr.cast::<U>(), length, capacity, alloc) }
3351    }
3352}
3353
3354/// Denotes that an allocation of `From` can be recycled into an allocation of `Self`.
3355///
3356/// # Safety
3357///
3358/// `Self` is `Recyclable<From>` if `Layout::new::<Self>() == Layout::new::<From>()`.
3359unsafe trait Recyclable<From: Sized>: Sized {}
3360
3361#[unstable_feature_bound(transmutability)]
3362// SAFETY: enforced by `TransmuteFrom`
3363unsafe impl<From, To> Recyclable<From> for To
3364where
3365    for<'a> &'a MaybeUninit<To>: TransmuteFrom<&'a MaybeUninit<From>, { Assume::SAFETY }>,
3366    for<'a> &'a MaybeUninit<From>: TransmuteFrom<&'a MaybeUninit<To>, { Assume::SAFETY }>,
3367{
3368}
3369
3370impl<T: Clone, A: Allocator> Vec<T, A> {
3371    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3372    ///
3373    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3374    /// difference, with each additional slot filled with `value`.
3375    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3376    ///
3377    /// This method requires `T` to implement [`Clone`],
3378    /// in order to be able to clone the passed value.
3379    /// If you need more flexibility (or want to rely on [`Default`] instead of
3380    /// [`Clone`]), use [`Vec::resize_with`].
3381    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3382    ///
3383    /// # Panics
3384    ///
3385    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3386    ///
3387    /// # Examples
3388    ///
3389    /// ```
3390    /// let mut vec = vec!["hello"];
3391    /// vec.resize(3, "world");
3392    /// assert_eq!(vec, ["hello", "world", "world"]);
3393    ///
3394    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3395    /// vec.resize(2, '_');
3396    /// assert_eq!(vec, ['a', 'b']);
3397    /// ```
3398    #[cfg(not(no_global_oom_handling))]
3399    #[stable(feature = "vec_resize", since = "1.5.0")]
3400    pub fn resize(&mut self, new_len: usize, value: T) {
3401        let len = self.len();
3402
3403        if new_len > len {
3404            self.extend_with(new_len - len, value)
3405        } else {
3406            self.truncate(new_len);
3407        }
3408    }
3409
3410    /// Clones and appends all elements in a slice to the `Vec`.
3411    ///
3412    /// Iterates over the slice `other`, clones each element, and then appends
3413    /// it to this `Vec`. The `other` slice is traversed in-order.
3414    ///
3415    /// Note that this function is the same as [`extend`],
3416    /// except that it also works with slice elements that are Clone but not Copy.
3417    /// If Rust gets specialization this function may be deprecated.
3418    ///
3419    /// # Panics
3420    ///
3421    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3422    ///
3423    /// # Examples
3424    ///
3425    /// ```
3426    /// let mut vec = vec![1];
3427    /// vec.extend_from_slice(&[2, 3, 4]);
3428    /// assert_eq!(vec, [1, 2, 3, 4]);
3429    /// ```
3430    ///
3431    /// [`extend`]: Vec::extend
3432    #[cfg(not(no_global_oom_handling))]
3433    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3434    pub fn extend_from_slice(&mut self, other: &[T]) {
3435        self.spec_extend(other.iter())
3436    }
3437
3438    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3439    ///
3440    /// `src` must be a range that can form a valid subslice of the `Vec`.
3441    ///
3442    /// # Panics
3443    ///
3444    /// Panics if starting index is greater than the end index, if the index is
3445    /// greater than the length of the vector, or if the new capacity exceeds
3446    /// `isize::MAX` _bytes_.
3447    ///
3448    /// # Examples
3449    ///
3450    /// ```
3451    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3452    /// characters.extend_from_within(2..);
3453    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3454    ///
3455    /// let mut numbers = vec![0, 1, 2, 3, 4];
3456    /// numbers.extend_from_within(..2);
3457    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3458    ///
3459    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3460    /// strings.extend_from_within(1..=2);
3461    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3462    /// ```
3463    #[cfg(not(no_global_oom_handling))]
3464    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3465    pub fn extend_from_within<R>(&mut self, src: R)
3466    where
3467        R: RangeBounds<usize>,
3468    {
3469        let range = slice::range(src, ..self.len());
3470        self.reserve(range.len());
3471
3472        // SAFETY:
3473        // - `slice::range` guarantees that the given range is valid for indexing self
3474        unsafe {
3475            self.spec_extend_from_within(range);
3476        }
3477    }
3478}
3479
3480impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3481    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3482    ///
3483    /// # Panics
3484    ///
3485    /// Panics if the length of the resulting vector would overflow a `usize`.
3486    ///
3487    /// This is only possible when flattening a vector of arrays of zero-sized
3488    /// types, and thus tends to be irrelevant in practice. If
3489    /// `size_of::<T>() > 0`, this will never panic.
3490    ///
3491    /// # Examples
3492    ///
3493    /// ```
3494    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3495    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3496    ///
3497    /// let mut flattened = vec.into_flattened();
3498    /// assert_eq!(flattened.pop(), Some(6));
3499    /// ```
3500    #[stable(feature = "slice_flatten", since = "1.80.0")]
3501    pub fn into_flattened(self) -> Vec<T, A> {
3502        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3503        let (new_len, new_cap) = if T::IS_ZST {
3504            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3505        } else {
3506            // SAFETY:
3507            // - `cap * N` cannot overflow because the allocation is already in
3508            // the address space.
3509            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3510            // valid elements in the allocation.
3511            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3512        };
3513        // SAFETY:
3514        // - `ptr` was allocated by `self`
3515        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3516        // - `new_cap` refers to the same sized allocation as `cap` because
3517        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3518        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3519        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3520    }
3521}
3522
3523impl<T: Clone, A: Allocator> Vec<T, A> {
3524    #[cfg(not(no_global_oom_handling))]
3525    /// Extend the vector by `n` clones of value.
3526    fn extend_with(&mut self, n: usize, value: T) {
3527        self.reserve(n);
3528
3529        unsafe {
3530            let mut ptr = self.as_mut_ptr().add(self.len());
3531            // Use SetLenOnDrop to work around bug where compiler
3532            // might not realize the store through `ptr` through self.set_len()
3533            // don't alias.
3534            let mut local_len = SetLenOnDrop::new(&mut self.len);
3535
3536            // Write all elements except the last one
3537            for _ in 1..n {
3538                ptr::write(ptr, value.clone());
3539                ptr = ptr.add(1);
3540                // Increment the length in every step in case clone() panics
3541                local_len.increment_len(1);
3542            }
3543
3544            if n > 0 {
3545                // We can write the last element directly without cloning needlessly
3546                ptr::write(ptr, value);
3547                local_len.increment_len(1);
3548            }
3549
3550            // len set by scope guard
3551        }
3552    }
3553}
3554
3555impl<T: PartialEq, A: Allocator> Vec<T, A> {
3556    /// Removes consecutive repeated elements in the vector according to the
3557    /// [`PartialEq`] trait implementation.
3558    ///
3559    /// If the vector is sorted, this removes all duplicates.
3560    ///
3561    /// # Examples
3562    ///
3563    /// ```
3564    /// let mut vec = vec![1, 2, 2, 3, 2];
3565    ///
3566    /// vec.dedup();
3567    ///
3568    /// assert_eq!(vec, [1, 2, 3, 2]);
3569    /// ```
3570    #[stable(feature = "rust1", since = "1.0.0")]
3571    #[inline]
3572    pub fn dedup(&mut self) {
3573        self.dedup_by(|a, b| a == b)
3574    }
3575}
3576
3577////////////////////////////////////////////////////////////////////////////////
3578// Internal methods and functions
3579////////////////////////////////////////////////////////////////////////////////
3580
3581#[doc(hidden)]
3582#[cfg(not(no_global_oom_handling))]
3583#[stable(feature = "rust1", since = "1.0.0")]
3584#[rustc_diagnostic_item = "vec_from_elem"]
3585pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3586    <T as SpecFromElem>::from_elem(elem, n, Global)
3587}
3588
3589#[doc(hidden)]
3590#[cfg(not(no_global_oom_handling))]
3591#[unstable(feature = "allocator_api", issue = "32838")]
3592pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3593    <T as SpecFromElem>::from_elem(elem, n, alloc)
3594}
3595
3596#[cfg(not(no_global_oom_handling))]
3597trait ExtendFromWithinSpec {
3598    /// # Safety
3599    ///
3600    /// - `src` needs to be valid index
3601    /// - `self.capacity() - self.len()` must be `>= src.len()`
3602    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3603}
3604
3605#[cfg(not(no_global_oom_handling))]
3606impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3607    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3608        // SAFETY:
3609        // - len is increased only after initializing elements
3610        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3611
3612        // SAFETY:
3613        // - caller guarantees that src is a valid index
3614        let to_clone = unsafe { this.get_unchecked(src) };
3615
3616        iter::zip(to_clone, spare)
3617            .map(|(src, dst)| dst.write(src.clone()))
3618            // Note:
3619            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3620            // - len is increased after each element to prevent leaks (see issue #82533)
3621            .for_each(|_| *len += 1);
3622    }
3623}
3624
3625#[cfg(not(no_global_oom_handling))]
3626impl<T: TrivialClone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3627    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3628        let count = src.len();
3629        {
3630            let (init, spare) = self.split_at_spare_mut();
3631
3632            // SAFETY:
3633            // - caller guarantees that `src` is a valid index
3634            let source = unsafe { init.get_unchecked(src) };
3635
3636            // SAFETY:
3637            // - Both pointers are created from unique slice references (`&mut [_]`)
3638            //   so they are valid and do not overlap.
3639            // - Elements implement `TrivialClone` so this is equivalent to calling
3640            //   `clone` on every one of them.
3641            // - `count` is equal to the len of `source`, so source is valid for
3642            //   `count` reads
3643            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3644            //   is valid for `count` writes
3645            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3646        }
3647
3648        // SAFETY:
3649        // - The elements were just initialized by `copy_nonoverlapping`
3650        self.len += count;
3651    }
3652}
3653
3654////////////////////////////////////////////////////////////////////////////////
3655// Common trait implementations for Vec
3656////////////////////////////////////////////////////////////////////////////////
3657
3658#[stable(feature = "rust1", since = "1.0.0")]
3659impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3660    type Target = [T];
3661
3662    #[inline]
3663    fn deref(&self) -> &[T] {
3664        self.as_slice()
3665    }
3666}
3667
3668#[stable(feature = "rust1", since = "1.0.0")]
3669impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3670    #[inline]
3671    fn deref_mut(&mut self) -> &mut [T] {
3672        self.as_mut_slice()
3673    }
3674}
3675
3676#[unstable(feature = "deref_pure_trait", issue = "87121")]
3677unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3678
3679#[cfg(not(no_global_oom_handling))]
3680#[stable(feature = "rust1", since = "1.0.0")]
3681impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3682    fn clone(&self) -> Self {
3683        let alloc = self.allocator().clone();
3684        <[T]>::to_vec_in(&**self, alloc)
3685    }
3686
3687    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3688    ///
3689    /// This method is preferred over simply assigning `source.clone()` to `self`,
3690    /// as it avoids reallocation if possible. Additionally, if the element type
3691    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3692    /// elements as well.
3693    ///
3694    /// # Examples
3695    ///
3696    /// ```
3697    /// let x = vec![5, 6, 7];
3698    /// let mut y = vec![8, 9, 10];
3699    /// let yp: *const i32 = y.as_ptr();
3700    ///
3701    /// y.clone_from(&x);
3702    ///
3703    /// // The value is the same
3704    /// assert_eq!(x, y);
3705    ///
3706    /// // And no reallocation occurred
3707    /// assert_eq!(yp, y.as_ptr());
3708    /// ```
3709    fn clone_from(&mut self, source: &Self) {
3710        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3711    }
3712}
3713
3714/// The hash of a vector is the same as that of the corresponding slice,
3715/// as required by the `core::borrow::Borrow` implementation.
3716///
3717/// ```
3718/// use std::hash::BuildHasher;
3719///
3720/// let b = std::hash::RandomState::new();
3721/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3722/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3723/// assert_eq!(b.hash_one(v), b.hash_one(s));
3724/// ```
3725#[stable(feature = "rust1", since = "1.0.0")]
3726impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3727    #[inline]
3728    fn hash<H: Hasher>(&self, state: &mut H) {
3729        Hash::hash(&**self, state)
3730    }
3731}
3732
3733#[stable(feature = "rust1", since = "1.0.0")]
3734impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3735    type Output = I::Output;
3736
3737    #[inline]
3738    fn index(&self, index: I) -> &Self::Output {
3739        Index::index(&**self, index)
3740    }
3741}
3742
3743#[stable(feature = "rust1", since = "1.0.0")]
3744impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3745    #[inline]
3746    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3747        IndexMut::index_mut(&mut **self, index)
3748    }
3749}
3750
3751/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3752///
3753/// # Allocation behavior
3754///
3755/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3756/// That also applies to this trait impl.
3757///
3758/// **Note:** This section covers implementation details and is therefore exempt from
3759/// stability guarantees.
3760///
3761/// Vec may use any or none of the following strategies,
3762/// depending on the supplied iterator:
3763///
3764/// * preallocate based on [`Iterator::size_hint()`]
3765///   * and panic if the number of items is outside the provided lower/upper bounds
3766/// * use an amortized growth strategy similar to `pushing` one item at a time
3767/// * perform the iteration in-place on the original allocation backing the iterator
3768///
3769/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3770/// consumption and improves cache locality. But when big, short-lived allocations are created,
3771/// only a small fraction of their items get collected, no further use is made of the spare capacity
3772/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3773/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3774/// footprint.
3775///
3776/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3777/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3778/// the size of the long-lived struct.
3779///
3780/// [owned slice]: Box
3781///
3782/// ```rust
3783/// # use std::sync::Mutex;
3784/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3785///
3786/// for i in 0..10 {
3787///     let big_temporary: Vec<u16> = (0..1024).collect();
3788///     // discard most items
3789///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3790///     // without this a lot of unused capacity might be moved into the global
3791///     result.shrink_to_fit();
3792///     LONG_LIVED.lock().unwrap().push(result);
3793/// }
3794/// ```
3795#[cfg(not(no_global_oom_handling))]
3796#[stable(feature = "rust1", since = "1.0.0")]
3797impl<T> FromIterator<T> for Vec<T> {
3798    #[inline]
3799    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3800        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3801    }
3802}
3803
3804#[stable(feature = "rust1", since = "1.0.0")]
3805impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3806    type Item = T;
3807    type IntoIter = IntoIter<T, A>;
3808
3809    /// Creates a consuming iterator, that is, one that moves each value out of
3810    /// the vector (from start to end). The vector cannot be used after calling
3811    /// this.
3812    ///
3813    /// # Examples
3814    ///
3815    /// ```
3816    /// let v = vec!["a".to_string(), "b".to_string()];
3817    /// let mut v_iter = v.into_iter();
3818    ///
3819    /// let first_element: Option<String> = v_iter.next();
3820    ///
3821    /// assert_eq!(first_element, Some("a".to_string()));
3822    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3823    /// assert_eq!(v_iter.next(), None);
3824    /// ```
3825    #[inline]
3826    fn into_iter(self) -> Self::IntoIter {
3827        unsafe {
3828            let me = ManuallyDrop::new(self);
3829            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3830            let buf = me.buf.non_null();
3831            let begin = buf.as_ptr();
3832            let end = if T::IS_ZST {
3833                begin.wrapping_byte_add(me.len())
3834            } else {
3835                begin.add(me.len()) as *const T
3836            };
3837            let cap = me.buf.capacity();
3838            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3839        }
3840    }
3841}
3842
3843#[stable(feature = "rust1", since = "1.0.0")]
3844impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3845    type Item = &'a T;
3846    type IntoIter = slice::Iter<'a, T>;
3847
3848    fn into_iter(self) -> Self::IntoIter {
3849        self.iter()
3850    }
3851}
3852
3853#[stable(feature = "rust1", since = "1.0.0")]
3854impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3855    type Item = &'a mut T;
3856    type IntoIter = slice::IterMut<'a, T>;
3857
3858    fn into_iter(self) -> Self::IntoIter {
3859        self.iter_mut()
3860    }
3861}
3862
3863#[cfg(not(no_global_oom_handling))]
3864#[stable(feature = "rust1", since = "1.0.0")]
3865impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3866    #[inline]
3867    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3868        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3869    }
3870
3871    #[inline]
3872    fn extend_one(&mut self, item: T) {
3873        self.push(item);
3874    }
3875
3876    #[inline]
3877    fn extend_reserve(&mut self, additional: usize) {
3878        self.reserve(additional);
3879    }
3880
3881    #[inline]
3882    unsafe fn extend_one_unchecked(&mut self, item: T) {
3883        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3884        unsafe {
3885            let len = self.len();
3886            ptr::write(self.as_mut_ptr().add(len), item);
3887            self.set_len(len + 1);
3888        }
3889    }
3890}
3891
3892impl<T, A: Allocator> Vec<T, A> {
3893    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3894    // they have no further optimizations to apply
3895    #[cfg(not(no_global_oom_handling))]
3896    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3897        // This is the case for a general iterator.
3898        //
3899        // This function should be the moral equivalent of:
3900        //
3901        //      for item in iterator {
3902        //          self.push(item);
3903        //      }
3904        while let Some(element) = iterator.next() {
3905            let len = self.len();
3906            if len == self.capacity() {
3907                let (lower, _) = iterator.size_hint();
3908                self.reserve(lower.saturating_add(1));
3909            }
3910            unsafe {
3911                ptr::write(self.as_mut_ptr().add(len), element);
3912                // Since next() executes user code which can panic we have to bump the length
3913                // after each step.
3914                // NB can't overflow since we would have had to alloc the address space
3915                self.set_len(len + 1);
3916            }
3917        }
3918    }
3919
3920    // specific extend for `TrustedLen` iterators, called both by the specializations
3921    // and internal places where resolving specialization makes compilation slower
3922    #[cfg(not(no_global_oom_handling))]
3923    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3924        let (low, high) = iterator.size_hint();
3925        if let Some(additional) = high {
3926            debug_assert_eq!(
3927                low,
3928                additional,
3929                "TrustedLen iterator's size hint is not exact: {:?}",
3930                (low, high)
3931            );
3932            self.reserve(additional);
3933            unsafe {
3934                let ptr = self.as_mut_ptr();
3935                let mut local_len = SetLenOnDrop::new(&mut self.len);
3936                iterator.for_each(move |element| {
3937                    ptr::write(ptr.add(local_len.current_len()), element);
3938                    // Since the loop executes user code which can panic we have to update
3939                    // the length every step to correctly drop what we've written.
3940                    // NB can't overflow since we would have had to alloc the address space
3941                    local_len.increment_len(1);
3942                });
3943            }
3944        } else {
3945            // Per TrustedLen contract a `None` upper bound means that the iterator length
3946            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3947            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3948            // This avoids additional codegen for a fallback code path which would eventually
3949            // panic anyway.
3950            panic!("capacity overflow");
3951        }
3952    }
3953
3954    /// Creates a splicing iterator that replaces the specified range in the vector
3955    /// with the given `replace_with` iterator and yields the removed items.
3956    /// `replace_with` does not need to be the same length as `range`.
3957    ///
3958    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3959    ///
3960    /// It is unspecified how many elements are removed from the vector
3961    /// if the `Splice` value is leaked.
3962    ///
3963    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3964    ///
3965    /// This is optimal if:
3966    ///
3967    /// * The tail (elements in the vector after `range`) is empty,
3968    /// * or `replace_with` yields fewer or equal elements than `range`'s length
3969    /// * or the lower bound of its `size_hint()` is exact.
3970    ///
3971    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3972    ///
3973    /// # Panics
3974    ///
3975    /// Panics if the range has `start_bound > end_bound`, or, if the range is
3976    /// bounded on either end and past the length of the vector.
3977    ///
3978    /// # Examples
3979    ///
3980    /// ```
3981    /// let mut v = vec![1, 2, 3, 4];
3982    /// let new = [7, 8, 9];
3983    /// let u: Vec<_> = v.splice(1..3, new).collect();
3984    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3985    /// assert_eq!(u, [2, 3]);
3986    /// ```
3987    ///
3988    /// Using `splice` to insert new items into a vector efficiently at a specific position
3989    /// indicated by an empty range:
3990    ///
3991    /// ```
3992    /// let mut v = vec![1, 5];
3993    /// let new = [2, 3, 4];
3994    /// v.splice(1..1, new);
3995    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3996    /// ```
3997    #[cfg(not(no_global_oom_handling))]
3998    #[inline]
3999    #[stable(feature = "vec_splice", since = "1.21.0")]
4000    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
4001    where
4002        R: RangeBounds<usize>,
4003        I: IntoIterator<Item = T>,
4004    {
4005        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
4006    }
4007
4008    /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
4009    ///
4010    /// If the closure returns `true`, the element is removed from the vector
4011    /// and yielded. If the closure returns `false`, or panics, the element
4012    /// remains in the vector and will not be yielded.
4013    ///
4014    /// Only elements that fall in the provided range are considered for extraction, but any elements
4015    /// after the range will still have to be moved if any element has been extracted.
4016    ///
4017    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
4018    /// or the iteration short-circuits, then the remaining elements will be retained.
4019    /// Use `extract_if().for_each(drop)` if you do not need the returned iterator,
4020    /// or [`retain_mut`] with a negated predicate if you also do not need to restrict the range.
4021    ///
4022    /// [`retain_mut`]: Vec::retain_mut
4023    ///
4024    /// Using this method is equivalent to the following code:
4025    ///
4026    /// ```
4027    /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
4028    /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
4029    /// # let mut vec2 = vec.clone();
4030    /// # let range = 1..5;
4031    /// let mut i = range.start;
4032    /// let end_items = vec.len() - range.end;
4033    /// # let mut extracted = vec![];
4034    ///
4035    /// while i < vec.len() - end_items {
4036    ///     if some_predicate(&mut vec[i]) {
4037    ///         let val = vec.remove(i);
4038    ///         // your code here
4039    /// #         extracted.push(val);
4040    ///     } else {
4041    ///         i += 1;
4042    ///     }
4043    /// }
4044    ///
4045    /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
4046    /// # assert_eq!(vec, vec2);
4047    /// # assert_eq!(extracted, extracted2);
4048    /// ```
4049    ///
4050    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
4051    /// because it can backshift the elements of the array in bulk.
4052    ///
4053    /// The iterator also lets you mutate the value of each element in the
4054    /// closure, regardless of whether you choose to keep or remove it.
4055    ///
4056    /// # Panics
4057    ///
4058    /// If `range` is out of bounds.
4059    ///
4060    /// # Examples
4061    ///
4062    /// Splitting a vector into even and odd values, reusing the original vector:
4063    ///
4064    /// ```
4065    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
4066    ///
4067    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
4068    /// let odds = numbers;
4069    ///
4070    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
4071    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
4072    /// ```
4073    ///
4074    /// Using the range argument to only process a part of the vector:
4075    ///
4076    /// ```
4077    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
4078    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
4079    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
4080    /// assert_eq!(ones.len(), 3);
4081    /// ```
4082    #[stable(feature = "extract_if", since = "1.87.0")]
4083    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
4084    where
4085        F: FnMut(&mut T) -> bool,
4086        R: RangeBounds<usize>,
4087    {
4088        ExtractIf::new(self, filter, range)
4089    }
4090}
4091
4092/// Extend implementation that copies elements out of references before pushing them onto the Vec.
4093///
4094/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
4095/// append the entire slice at once.
4096///
4097/// [`copy_from_slice`]: slice::copy_from_slice
4098#[cfg(not(no_global_oom_handling))]
4099#[stable(feature = "extend_ref", since = "1.2.0")]
4100impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
4101    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
4102        self.spec_extend(iter.into_iter())
4103    }
4104
4105    #[inline]
4106    fn extend_one(&mut self, &item: &'a T) {
4107        self.push(item);
4108    }
4109
4110    #[inline]
4111    fn extend_reserve(&mut self, additional: usize) {
4112        self.reserve(additional);
4113    }
4114
4115    #[inline]
4116    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4117        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4118        unsafe {
4119            let len = self.len();
4120            ptr::write(self.as_mut_ptr().add(len), item);
4121            self.set_len(len + 1);
4122        }
4123    }
4124}
4125
4126/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4127#[stable(feature = "rust1", since = "1.0.0")]
4128impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4129where
4130    T: PartialOrd,
4131    A1: Allocator,
4132    A2: Allocator,
4133{
4134    #[inline]
4135    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4136        PartialOrd::partial_cmp(&**self, &**other)
4137    }
4138}
4139
4140#[stable(feature = "rust1", since = "1.0.0")]
4141impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4142
4143/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4144#[stable(feature = "rust1", since = "1.0.0")]
4145impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4146    #[inline]
4147    fn cmp(&self, other: &Self) -> Ordering {
4148        Ord::cmp(&**self, &**other)
4149    }
4150}
4151
4152#[stable(feature = "rust1", since = "1.0.0")]
4153unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4154    fn drop(&mut self) {
4155        unsafe {
4156            // use drop for [T]
4157            // use a raw slice to refer to the elements of the vector as weakest necessary type;
4158            // could avoid questions of validity in certain cases
4159            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4160        }
4161        // RawVec handles deallocation
4162    }
4163}
4164
4165#[stable(feature = "rust1", since = "1.0.0")]
4166#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4167impl<T> const Default for Vec<T> {
4168    /// Creates an empty `Vec<T>`.
4169    ///
4170    /// The vector will not allocate until elements are pushed onto it.
4171    fn default() -> Vec<T> {
4172        Vec::new()
4173    }
4174}
4175
4176#[stable(feature = "rust1", since = "1.0.0")]
4177impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4178    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4179        fmt::Debug::fmt(&**self, f)
4180    }
4181}
4182
4183#[stable(feature = "rust1", since = "1.0.0")]
4184impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4185    fn as_ref(&self) -> &Vec<T, A> {
4186        self
4187    }
4188}
4189
4190#[stable(feature = "vec_as_mut", since = "1.5.0")]
4191impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4192    fn as_mut(&mut self) -> &mut Vec<T, A> {
4193        self
4194    }
4195}
4196
4197#[stable(feature = "rust1", since = "1.0.0")]
4198impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4199    fn as_ref(&self) -> &[T] {
4200        self
4201    }
4202}
4203
4204#[stable(feature = "vec_as_mut", since = "1.5.0")]
4205impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4206    fn as_mut(&mut self) -> &mut [T] {
4207        self
4208    }
4209}
4210
4211#[cfg(not(no_global_oom_handling))]
4212#[stable(feature = "rust1", since = "1.0.0")]
4213impl<T: Clone> From<&[T]> for Vec<T> {
4214    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4215    ///
4216    /// # Examples
4217    ///
4218    /// ```
4219    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4220    /// ```
4221    fn from(s: &[T]) -> Vec<T> {
4222        s.to_vec()
4223    }
4224}
4225
4226#[cfg(not(no_global_oom_handling))]
4227#[stable(feature = "vec_from_mut", since = "1.19.0")]
4228impl<T: Clone> From<&mut [T]> for Vec<T> {
4229    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4230    ///
4231    /// # Examples
4232    ///
4233    /// ```
4234    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4235    /// ```
4236    fn from(s: &mut [T]) -> Vec<T> {
4237        s.to_vec()
4238    }
4239}
4240
4241#[cfg(not(no_global_oom_handling))]
4242#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4243impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4244    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4245    ///
4246    /// # Examples
4247    ///
4248    /// ```
4249    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4250    /// ```
4251    fn from(s: &[T; N]) -> Vec<T> {
4252        Self::from(s.as_slice())
4253    }
4254}
4255
4256#[cfg(not(no_global_oom_handling))]
4257#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4258impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4259    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4260    ///
4261    /// # Examples
4262    ///
4263    /// ```
4264    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4265    /// ```
4266    fn from(s: &mut [T; N]) -> Vec<T> {
4267        Self::from(s.as_mut_slice())
4268    }
4269}
4270
4271#[cfg(not(no_global_oom_handling))]
4272#[stable(feature = "vec_from_array", since = "1.44.0")]
4273impl<T, const N: usize> From<[T; N]> for Vec<T> {
4274    /// Allocates a `Vec<T>` and moves `s`'s items into it.
4275    ///
4276    /// # Examples
4277    ///
4278    /// ```
4279    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4280    /// ```
4281    fn from(s: [T; N]) -> Vec<T> {
4282        <[T]>::into_vec(Box::new(s))
4283    }
4284}
4285
4286#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4287impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4288where
4289    [T]: ToOwned<Owned = Vec<T>>,
4290{
4291    /// Converts a clone-on-write slice into a vector.
4292    ///
4293    /// If `s` already owns a `Vec<T>`, it will be returned directly.
4294    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4295    /// filled by cloning `s`'s items into it.
4296    ///
4297    /// # Examples
4298    ///
4299    /// ```
4300    /// # use std::borrow::Cow;
4301    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4302    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4303    /// assert_eq!(Vec::from(o), Vec::from(b));
4304    /// ```
4305    fn from(s: Cow<'a, [T]>) -> Vec<T> {
4306        s.into_owned()
4307    }
4308}
4309
4310// note: test pulls in std, which causes errors here
4311#[stable(feature = "vec_from_box", since = "1.18.0")]
4312impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4313    /// Converts a boxed slice into a vector by transferring ownership of
4314    /// the existing heap allocation.
4315    ///
4316    /// # Examples
4317    ///
4318    /// ```
4319    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4320    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4321    /// ```
4322    fn from(s: Box<[T], A>) -> Self {
4323        s.into_vec()
4324    }
4325}
4326
4327// note: test pulls in std, which causes errors here
4328#[cfg(not(no_global_oom_handling))]
4329#[stable(feature = "box_from_vec", since = "1.20.0")]
4330impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4331    /// Converts a vector into a boxed slice.
4332    ///
4333    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4334    ///
4335    /// [owned slice]: Box
4336    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4337    ///
4338    /// # Examples
4339    ///
4340    /// ```
4341    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4342    /// ```
4343    ///
4344    /// Any excess capacity is removed:
4345    /// ```
4346    /// let mut vec = Vec::with_capacity(10);
4347    /// vec.extend([1, 2, 3]);
4348    ///
4349    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4350    /// ```
4351    fn from(v: Vec<T, A>) -> Self {
4352        v.into_boxed_slice()
4353    }
4354}
4355
4356#[cfg(not(no_global_oom_handling))]
4357#[stable(feature = "rust1", since = "1.0.0")]
4358impl From<&str> for Vec<u8> {
4359    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4360    ///
4361    /// # Examples
4362    ///
4363    /// ```
4364    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4365    /// ```
4366    fn from(s: &str) -> Vec<u8> {
4367        From::from(s.as_bytes())
4368    }
4369}
4370
4371#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4372impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4373    type Error = Vec<T, A>;
4374
4375    /// Gets the entire contents of the `Vec<T>` as an array,
4376    /// if its size exactly matches that of the requested array.
4377    ///
4378    /// # Examples
4379    ///
4380    /// ```
4381    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4382    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4383    /// ```
4384    ///
4385    /// If the length doesn't match, the input comes back in `Err`:
4386    /// ```
4387    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4388    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4389    /// ```
4390    ///
4391    /// If you're fine with just getting a prefix of the `Vec<T>`,
4392    /// you can call [`.truncate(N)`](Vec::truncate) first.
4393    /// ```
4394    /// let mut v = String::from("hello world").into_bytes();
4395    /// v.sort();
4396    /// v.truncate(2);
4397    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4398    /// assert_eq!(a, b' ');
4399    /// assert_eq!(b, b'd');
4400    /// ```
4401    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4402        if vec.len() != N {
4403            return Err(vec);
4404        }
4405
4406        // SAFETY: `.set_len(0)` is always sound.
4407        unsafe { vec.set_len(0) };
4408
4409        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4410        // the alignment the array needs is the same as the items.
4411        // We checked earlier that we have sufficient items.
4412        // The items will not double-drop as the `set_len`
4413        // tells the `Vec` not to also drop them.
4414        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4415        Ok(array)
4416    }
4417}