Skip to main content

alloc/
slice.rs

1//! Utilities for the slice primitive type.
2//!
3//! *[See also the slice primitive type](slice).*
4//!
5//! Most of the structs in this module are iterator types which can only be created
6//! using a certain function. For example, `slice.iter()` yields an [`Iter`].
7//!
8//! A few functions are provided to create a slice from a value reference
9//! or from a raw pointer.
10#![stable(feature = "rust1", since = "1.0.0")]
11
12use core::borrow::{Borrow, BorrowMut};
13#[cfg(not(no_global_oom_handling))]
14use core::clone::TrivialClone;
15#[cfg(not(no_global_oom_handling))]
16use core::cmp::Ordering::{self, Less};
17#[cfg(not(no_global_oom_handling))]
18use core::mem::MaybeUninit;
19#[cfg(not(no_global_oom_handling))]
20use core::ptr;
21#[stable(feature = "array_windows", since = "1.94.0")]
22pub use core::slice::ArrayWindows;
23#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
24pub use core::slice::EscapeAscii;
25#[stable(feature = "get_many_mut", since = "1.86.0")]
26pub use core::slice::GetDisjointMutError;
27#[stable(feature = "slice_get_slice", since = "1.28.0")]
28pub use core::slice::SliceIndex;
29#[cfg(not(no_global_oom_handling))]
30use core::slice::sort;
31#[stable(feature = "slice_group_by", since = "1.77.0")]
32pub use core::slice::{ChunkBy, ChunkByMut};
33#[stable(feature = "rust1", since = "1.0.0")]
34pub use core::slice::{Chunks, Windows};
35#[stable(feature = "chunks_exact", since = "1.31.0")]
36pub use core::slice::{ChunksExact, ChunksExactMut};
37#[stable(feature = "rust1", since = "1.0.0")]
38pub use core::slice::{ChunksMut, Split, SplitMut};
39#[stable(feature = "rust1", since = "1.0.0")]
40pub use core::slice::{Iter, IterMut};
41#[stable(feature = "rchunks", since = "1.31.0")]
42pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
43#[stable(feature = "slice_rsplit", since = "1.27.0")]
44pub use core::slice::{RSplit, RSplitMut};
45#[stable(feature = "rust1", since = "1.0.0")]
46pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
47#[stable(feature = "split_inclusive", since = "1.51.0")]
48pub use core::slice::{SplitInclusive, SplitInclusiveMut};
49#[stable(feature = "from_ref", since = "1.28.0")]
50pub use core::slice::{from_mut, from_ref};
51#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
52pub use core::slice::{from_mut_ptr_range, from_ptr_range};
53#[stable(feature = "rust1", since = "1.0.0")]
54pub use core::slice::{from_raw_parts, from_raw_parts_mut};
55#[unstable(feature = "slice_range", issue = "76393")]
56pub use core::slice::{range, try_range};
57
58////////////////////////////////////////////////////////////////////////////////
59// Basic slice extension methods
60////////////////////////////////////////////////////////////////////////////////
61use crate::alloc::Allocator;
62#[cfg(not(no_global_oom_handling))]
63use crate::alloc::Global;
64#[cfg(not(no_global_oom_handling))]
65use crate::borrow::ToOwned;
66use crate::boxed::Box;
67use crate::vec::Vec;
68
69impl<T> [T] {
70    /// Sorts the slice in ascending order, preserving initial order of equal elements.
71    ///
72    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
73    /// worst-case.
74    ///
75    /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
76    /// may panic; even if the function exits normally, the resulting order of elements in the slice
77    /// is unspecified. See also the note on panicking below.
78    ///
79    /// When applicable, unstable sorting is preferred because it is generally faster than stable
80    /// sorting and it doesn't allocate auxiliary memory. See
81    /// [`sort_unstable`](slice::sort_unstable). The exception are partially sorted slices, which
82    /// may be better served with `slice::sort`.
83    ///
84    /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
85    /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
86    /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
87    /// `slice::sort_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a [total
88    /// order] users can sort slices containing floating-point values. Alternatively, if all values
89    /// in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`] forms a
90    /// [total order], it's possible to sort the slice with `sort_by(|a, b|
91    /// a.partial_cmp(b).unwrap())`.
92    ///
93    /// # Current implementation
94    ///
95    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
96    /// combines the fast average case of quicksort with the fast worst case and partial run
97    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
98    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
99    ///
100    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
101    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
102    /// clamps at `self.len() / 2`.
103    ///
104    /// # Panics
105    ///
106    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
107    /// the [`Ord`] implementation itself panics.
108    ///
109    /// All safe functions on slices preserve the invariant that even if the function panics, all
110    /// original elements will remain in the slice and any possible modifications via interior
111    /// mutability are observed in the input. This ensures that recovery code (for instance inside
112    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
113    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
114    /// to dispose of all contained elements.
115    ///
116    /// # Examples
117    ///
118    /// ```
119    /// let mut v = [4, -5, 1, -3, 2];
120    ///
121    /// v.sort();
122    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
123    /// ```
124    ///
125    /// [driftsort]: https://github.com/Voultapher/driftsort
126    /// [total order]: https://en.wikipedia.org/wiki/Total_order
127    #[cfg(not(no_global_oom_handling))]
128    #[rustc_allow_incoherent_impl]
129    #[stable(feature = "rust1", since = "1.0.0")]
130    #[inline]
131    pub fn sort(&mut self)
132    where
133        T: Ord,
134    {
135        stable_sort(self, T::lt);
136    }
137
138    /// Sorts the slice in ascending order with a comparison function, preserving initial order of
139    /// equal elements.
140    ///
141    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
142    /// worst-case.
143    ///
144    /// If the comparison function `compare` does not implement a [total order], the function may
145    /// panic; even if the function exits normally, the resulting order of elements in the slice is
146    /// unspecified. See also the note on panicking below.
147    ///
148    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
149    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
150    /// examples see the [`Ord`] documentation.
151    ///
152    /// # Current implementation
153    ///
154    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
155    /// combines the fast average case of quicksort with the fast worst case and partial run
156    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
157    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
158    ///
159    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
160    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
161    /// clamps at `self.len() / 2`.
162    ///
163    /// # Panics
164    ///
165    /// May panic if `compare` does not implement a [total order], or if `compare` itself panics.
166    ///
167    /// All safe functions on slices preserve the invariant that even if the function panics, all
168    /// original elements will remain in the slice and any possible modifications via interior
169    /// mutability are observed in the input. This ensures that recovery code (for instance inside
170    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
171    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
172    /// to dispose of all contained elements.
173    ///
174    /// # Examples
175    ///
176    /// ```
177    /// let mut v = [4, -5, 1, -3, 2];
178    /// v.sort_by(|a, b| a.cmp(b));
179    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
180    ///
181    /// // reverse sorting
182    /// v.sort_by(|a, b| b.cmp(a));
183    /// assert_eq!(v, [4, 2, 1, -3, -5]);
184    /// ```
185    ///
186    /// [driftsort]: https://github.com/Voultapher/driftsort
187    /// [total order]: https://en.wikipedia.org/wiki/Total_order
188    #[cfg(not(no_global_oom_handling))]
189    #[rustc_allow_incoherent_impl]
190    #[stable(feature = "rust1", since = "1.0.0")]
191    #[inline]
192    pub fn sort_by<F>(&mut self, mut compare: F)
193    where
194        F: FnMut(&T, &T) -> Ordering,
195    {
196        stable_sort(self, |a, b| compare(a, b) == Less);
197    }
198
199    /// Sorts the slice in ascending order with a key extraction function, preserving initial order
200    /// of equal elements.
201    ///
202    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
203    /// worst-case, where the key function is *O*(*m*).
204    ///
205    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
206    /// may panic; even if the function exits normally, the resulting order of elements in the slice
207    /// is unspecified. See also the note on panicking below.
208    ///
209    /// # Current implementation
210    ///
211    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
212    /// combines the fast average case of quicksort with the fast worst case and partial run
213    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
214    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
215    ///
216    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
217    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
218    /// clamps at `self.len() / 2`.
219    ///
220    /// # Panics
221    ///
222    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
223    /// the [`Ord`] implementation or the key-function `f` panics.
224    ///
225    /// All safe functions on slices preserve the invariant that even if the function panics, all
226    /// original elements will remain in the slice and any possible modifications via interior
227    /// mutability are observed in the input. This ensures that recovery code (for instance inside
228    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
229    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
230    /// to dispose of all contained elements.
231    ///
232    /// # Examples
233    ///
234    /// ```
235    /// let mut v = [4i32, -5, 1, -3, 2];
236    ///
237    /// v.sort_by_key(|k| k.abs());
238    /// assert_eq!(v, [1, 2, -3, 4, -5]);
239    /// ```
240    ///
241    /// [driftsort]: https://github.com/Voultapher/driftsort
242    /// [total order]: https://en.wikipedia.org/wiki/Total_order
243    #[cfg(not(no_global_oom_handling))]
244    #[rustc_allow_incoherent_impl]
245    #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
246    #[inline]
247    pub fn sort_by_key<K, F>(&mut self, mut f: F)
248    where
249        F: FnMut(&T) -> K,
250        K: Ord,
251    {
252        stable_sort(self, |a, b| f(a).lt(&f(b)));
253    }
254
255    /// Sorts the slice in ascending order with a key extraction function, preserving initial order
256    /// of equal elements.
257    ///
258    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \*
259    /// log(*n*)) worst-case, where the key function is *O*(*m*).
260    ///
261    /// During sorting, the key function is called at most once per element, by using temporary
262    /// storage to remember the results of key evaluation. The order of calls to the key function is
263    /// unspecified and may change in future versions of the standard library.
264    ///
265    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
266    /// may panic; even if the function exits normally, the resulting order of elements in the slice
267    /// is unspecified. See also the note on panicking below.
268    ///
269    /// For simple key functions (e.g., functions that are property accesses or basic operations),
270    /// [`sort_by_key`](slice::sort_by_key) is likely to be faster.
271    ///
272    /// # Current implementation
273    ///
274    /// The current implementation is based on [instruction-parallel-network sort][ipnsort] by Lukas
275    /// Bergdoll, which combines the fast average case of randomized quicksort with the fast worst
276    /// case of heapsort, while achieving linear time on fully sorted and reversed inputs. And
277    /// *O*(*k* \* log(*n*)) where *k* is the number of distinct elements in the input. It leverages
278    /// superscalar out-of-order execution capabilities commonly found in CPUs, to efficiently
279    /// perform the operation.
280    ///
281    /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
282    /// length of the slice.
283    ///
284    /// # Panics
285    ///
286    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
287    /// the [`Ord`] implementation panics.
288    ///
289    /// All safe functions on slices preserve the invariant that even if the function panics, all
290    /// original elements will remain in the slice and any possible modifications via interior
291    /// mutability are observed in the input. This ensures that recovery code (for instance inside
292    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
293    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
294    /// to dispose of all contained elements.
295    ///
296    /// # Examples
297    ///
298    /// ```
299    /// let mut v = [4i32, -5, 1, -3, 2, 10];
300    ///
301    /// // Strings are sorted by lexicographical order.
302    /// v.sort_by_cached_key(|k| k.to_string());
303    /// assert_eq!(v, [-3, -5, 1, 10, 2, 4]);
304    /// ```
305    ///
306    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
307    /// [total order]: https://en.wikipedia.org/wiki/Total_order
308    #[cfg(not(no_global_oom_handling))]
309    #[rustc_allow_incoherent_impl]
310    #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
311    #[inline]
312    pub fn sort_by_cached_key<K, F>(&mut self, f: F)
313    where
314        F: FnMut(&T) -> K,
315        K: Ord,
316    {
317        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
318        macro_rules! sort_by_key {
319            ($t:ty, $slice:ident, $f:ident) => {{
320                let mut indices: Vec<_> =
321                    $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
322                // The elements of `indices` are unique, as they are indexed, so any sort will be
323                // stable with respect to the original slice. We use `sort_unstable` here because
324                // it requires no memory allocation.
325                indices.sort_unstable();
326                for i in 0..$slice.len() {
327                    let mut index = indices[i].1;
328                    while (index as usize) < i {
329                        index = indices[index as usize].1;
330                    }
331                    indices[i].1 = index;
332                    $slice.swap(i, index as usize);
333                }
334            }};
335        }
336
337        let len = self.len();
338        if len < 2 {
339            return;
340        }
341
342        // Avoids binary-size usage in cases where the alignment doesn't work out to make this
343        // beneficial or on 32-bit platforms.
344        let is_using_u32_as_idx_type_helpful =
345            const { size_of::<(K, u32)>() < size_of::<(K, usize)>() };
346
347        // It's possible to instantiate this for u8 and u16 but, doing so is very wasteful in terms
348        // of compile-times and binary-size, the peak saved heap memory for u16 is (u8 + u16) -> 4
349        // bytes * u16::MAX vs (u8 + u32) -> 8 bytes * u16::MAX, the saved heap memory is at peak
350        // ~262KB.
351        if is_using_u32_as_idx_type_helpful && len <= (u32::MAX as usize) {
352            return sort_by_key!(u32, self, f);
353        }
354
355        sort_by_key!(usize, self, f)
356    }
357
358    /// Copies `self` into a new `Vec`.
359    ///
360    /// # Examples
361    ///
362    /// ```
363    /// let s = [10, 40, 30];
364    /// let x = s.to_vec();
365    /// // Here, `s` and `x` can be modified independently.
366    /// ```
367    #[cfg(not(no_global_oom_handling))]
368    #[rustc_allow_incoherent_impl]
369    #[rustc_conversion_suggestion]
370    #[stable(feature = "rust1", since = "1.0.0")]
371    #[inline]
372    pub fn to_vec(&self) -> Vec<T>
373    where
374        T: Clone,
375    {
376        self.to_vec_in(Global)
377    }
378
379    /// Copies `self` into a new `Vec` with an allocator.
380    ///
381    /// # Examples
382    ///
383    /// ```
384    /// #![feature(allocator_api)]
385    ///
386    /// use std::alloc::System;
387    ///
388    /// let s = [10, 40, 30];
389    /// let x = s.to_vec_in(System);
390    /// // Here, `s` and `x` can be modified independently.
391    /// ```
392    #[cfg(not(no_global_oom_handling))]
393    #[rustc_allow_incoherent_impl]
394    #[inline]
395    #[unstable(feature = "allocator_api", issue = "32838")]
396    pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
397    where
398        T: Clone,
399    {
400        return T::to_vec(self, alloc);
401
402        trait ConvertVec {
403            fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
404            where
405                Self: Sized;
406        }
407
408        impl<T: Clone> ConvertVec for T {
409            #[inline]
410            default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
411                struct DropGuard<'a, T, A: Allocator> {
412                    vec: &'a mut Vec<T, A>,
413                    num_init: usize,
414                }
415                impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
416                    #[inline]
417                    fn drop(&mut self) {
418                        // SAFETY:
419                        // items were marked initialized in the loop below
420                        unsafe {
421                            self.vec.set_len(self.num_init);
422                        }
423                    }
424                }
425                let mut vec = Vec::with_capacity_in(s.len(), alloc);
426                let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
427                let slots = guard.vec.spare_capacity_mut();
428                // .take(slots.len()) is necessary for LLVM to remove bounds checks
429                // and has better codegen than zip.
430                for (i, b) in s.iter().enumerate().take(slots.len()) {
431                    guard.num_init = i;
432                    slots[i].write(b.clone());
433                }
434                core::mem::forget(guard);
435                // SAFETY:
436                // the vec was allocated and initialized above to at least this length.
437                unsafe {
438                    vec.set_len(s.len());
439                }
440                vec
441            }
442        }
443
444        impl<T: TrivialClone> ConvertVec for T {
445            #[inline]
446            fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
447                let len = s.len();
448                let mut v = Vec::with_capacity_in(len, alloc);
449                // SAFETY:
450                // allocated above with the capacity of `s`, and initialize to `s.len()` in
451                // ptr::copy_to_non_overlapping below.
452                if len > 0 {
453                    unsafe {
454                        s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), len);
455                        v.set_len(len);
456                    }
457                }
458                v
459            }
460        }
461    }
462
463    /// Converts `self` into a vector without clones or allocation.
464    ///
465    /// The resulting vector can be converted back into a box via
466    /// `Vec<T>`'s `into_boxed_slice` method.
467    ///
468    /// # Examples
469    ///
470    /// ```
471    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
472    /// let x = s.into_vec();
473    /// // `s` cannot be used anymore because it has been converted into `x`.
474    ///
475    /// assert_eq!(x, vec![10, 40, 30]);
476    /// ```
477    #[rustc_allow_incoherent_impl]
478    #[stable(feature = "rust1", since = "1.0.0")]
479    #[inline]
480    #[rustc_diagnostic_item = "slice_into_vec"]
481    pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
482        unsafe {
483            let len = self.len();
484            let (b, alloc) = Box::into_raw_with_allocator(self);
485            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
486        }
487    }
488
489    /// Creates a vector by copying a slice `n` times.
490    ///
491    /// # Panics
492    ///
493    /// This function will panic if the capacity would overflow.
494    ///
495    /// # Examples
496    ///
497    /// ```
498    /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
499    /// ```
500    ///
501    /// A panic upon overflow:
502    ///
503    /// ```should_panic
504    /// // this will panic at runtime
505    /// b"0123456789abcdef".repeat(usize::MAX);
506    /// ```
507    #[rustc_allow_incoherent_impl]
508    #[cfg(not(no_global_oom_handling))]
509    #[stable(feature = "repeat_generic_slice", since = "1.40.0")]
510    pub fn repeat(&self, n: usize) -> Vec<T>
511    where
512        T: Copy,
513    {
514        if n == 0 {
515            return Vec::new();
516        }
517
518        // If `n` is larger than zero, it can be split as
519        // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
520        // `2^expn` is the number represented by the leftmost '1' bit of `n`,
521        // and `rem` is the remaining part of `n`.
522
523        // Using `Vec` to access `set_len()`.
524        let capacity = self.len().checked_mul(n).expect("capacity overflow");
525        let mut buf = Vec::with_capacity(capacity);
526
527        // `2^expn` repetition is done by doubling `buf` `expn`-times.
528        buf.extend(self);
529        {
530            let mut m = n >> 1;
531            // If `m > 0`, there are remaining bits up to the leftmost '1'.
532            while m > 0 {
533                // `buf.extend(buf)`:
534                unsafe {
535                    ptr::copy_nonoverlapping::<T>(
536                        buf.as_ptr(),
537                        (buf.as_mut_ptr()).add(buf.len()),
538                        buf.len(),
539                    );
540                    // `buf` has capacity of `self.len() * n`.
541                    let buf_len = buf.len();
542                    buf.set_len(buf_len * 2);
543                }
544
545                m >>= 1;
546            }
547        }
548
549        // `rem` (`= n - 2^expn`) repetition is done by copying
550        // first `rem` repetitions from `buf` itself.
551        let rem_len = capacity - buf.len(); // `self.len() * rem`
552        if rem_len > 0 {
553            // `buf.extend(buf[0 .. rem_len])`:
554            unsafe {
555                // This is non-overlapping since `2^expn > rem`.
556                ptr::copy_nonoverlapping::<T>(
557                    buf.as_ptr(),
558                    (buf.as_mut_ptr()).add(buf.len()),
559                    rem_len,
560                );
561                // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
562                buf.set_len(capacity);
563            }
564        }
565        buf
566    }
567
568    /// Flattens a slice of `T` into a single value `Self::Output`.
569    ///
570    /// # Examples
571    ///
572    /// ```
573    /// assert_eq!(["hello", "world"].concat(), "helloworld");
574    /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
575    /// ```
576    #[rustc_allow_incoherent_impl]
577    #[stable(feature = "rust1", since = "1.0.0")]
578    pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
579    where
580        Self: Concat<Item>,
581    {
582        Concat::concat(self)
583    }
584
585    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
586    /// given separator between each.
587    ///
588    /// # Examples
589    ///
590    /// ```
591    /// assert_eq!(["hello", "world"].join(" "), "hello world");
592    /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
593    /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
594    /// ```
595    #[rustc_allow_incoherent_impl]
596    #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
597    pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
598    where
599        Self: Join<Separator>,
600    {
601        Join::join(self, sep)
602    }
603
604    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
605    /// given separator between each.
606    ///
607    /// # Examples
608    ///
609    /// ```
610    /// # #![allow(deprecated)]
611    /// assert_eq!(["hello", "world"].connect(" "), "hello world");
612    /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
613    /// ```
614    #[rustc_allow_incoherent_impl]
615    #[stable(feature = "rust1", since = "1.0.0")]
616    #[deprecated(since = "1.3.0", note = "renamed to join", suggestion = "join")]
617    pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
618    where
619        Self: Join<Separator>,
620    {
621        Join::join(self, sep)
622    }
623}
624
625impl [u8] {
626    /// Returns a vector containing a copy of this slice where each byte
627    /// is mapped to its ASCII upper case equivalent.
628    ///
629    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
630    /// but non-ASCII letters are unchanged.
631    ///
632    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
633    ///
634    /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
635    #[cfg(not(no_global_oom_handling))]
636    #[rustc_allow_incoherent_impl]
637    #[must_use = "this returns the uppercase bytes as a new Vec, \
638                  without modifying the original"]
639    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
640    #[inline]
641    pub fn to_ascii_uppercase(&self) -> Vec<u8> {
642        let mut me = self.to_vec();
643        me.make_ascii_uppercase();
644        me
645    }
646
647    /// Returns a vector containing a copy of this slice where each byte
648    /// is mapped to its ASCII lower case equivalent.
649    ///
650    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
651    /// but non-ASCII letters are unchanged.
652    ///
653    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
654    ///
655    /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
656    #[cfg(not(no_global_oom_handling))]
657    #[rustc_allow_incoherent_impl]
658    #[must_use = "this returns the lowercase bytes as a new Vec, \
659                  without modifying the original"]
660    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
661    #[inline]
662    pub fn to_ascii_lowercase(&self) -> Vec<u8> {
663        let mut me = self.to_vec();
664        me.make_ascii_lowercase();
665        me
666    }
667}
668
669////////////////////////////////////////////////////////////////////////////////
670// Extension traits for slices over specific kinds of data
671////////////////////////////////////////////////////////////////////////////////
672
673/// Helper trait for [`[T]::concat`](slice::concat).
674///
675/// Note: the `Item` type parameter is not used in this trait,
676/// but it allows impls to be more generic.
677/// Without it, we get this error:
678///
679/// ```error
680/// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
681///    --> library/alloc/src/slice.rs:608:6
682///     |
683/// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
684///     |      ^ unconstrained type parameter
685/// ```
686///
687/// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
688/// such that multiple `T` types would apply:
689///
690/// ```
691/// # #[allow(dead_code)]
692/// pub struct Foo(Vec<u32>, Vec<String>);
693///
694/// impl std::borrow::Borrow<[u32]> for Foo {
695///     fn borrow(&self) -> &[u32] { &self.0 }
696/// }
697///
698/// impl std::borrow::Borrow<[String]> for Foo {
699///     fn borrow(&self) -> &[String] { &self.1 }
700/// }
701/// ```
702#[unstable(feature = "slice_concat_trait", issue = "27747")]
703pub trait Concat<Item: ?Sized> {
704    #[unstable(feature = "slice_concat_trait", issue = "27747")]
705    /// The resulting type after concatenation
706    type Output;
707
708    /// Implementation of [`[T]::concat`](slice::concat)
709    #[unstable(feature = "slice_concat_trait", issue = "27747")]
710    fn concat(slice: &Self) -> Self::Output;
711}
712
713/// Helper trait for [`[T]::join`](slice::join)
714#[unstable(feature = "slice_concat_trait", issue = "27747")]
715pub trait Join<Separator> {
716    #[unstable(feature = "slice_concat_trait", issue = "27747")]
717    /// The resulting type after concatenation
718    type Output;
719
720    /// Implementation of [`[T]::join`](slice::join)
721    #[unstable(feature = "slice_concat_trait", issue = "27747")]
722    fn join(slice: &Self, sep: Separator) -> Self::Output;
723}
724
725#[cfg(not(no_global_oom_handling))]
726#[unstable(feature = "slice_concat_ext", issue = "27747")]
727impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
728    type Output = Vec<T>;
729
730    fn concat(slice: &Self) -> Vec<T> {
731        let size = slice.iter().map(|slice| slice.borrow().len()).sum();
732        let mut result = Vec::with_capacity(size);
733        for v in slice {
734            result.extend_from_slice(v.borrow())
735        }
736        result
737    }
738}
739
740#[cfg(not(no_global_oom_handling))]
741#[unstable(feature = "slice_concat_ext", issue = "27747")]
742impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
743    type Output = Vec<T>;
744
745    fn join(slice: &Self, sep: &T) -> Vec<T> {
746        let mut iter = slice.iter();
747        let first = match iter.next() {
748            Some(first) => first,
749            None => return vec![],
750        };
751        let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
752        let mut result = Vec::with_capacity(size);
753        result.extend_from_slice(first.borrow());
754
755        for v in iter {
756            result.push(sep.clone());
757            result.extend_from_slice(v.borrow())
758        }
759        result
760    }
761}
762
763#[cfg(not(no_global_oom_handling))]
764#[unstable(feature = "slice_concat_ext", issue = "27747")]
765impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
766    type Output = Vec<T>;
767
768    fn join(slice: &Self, sep: &[T]) -> Vec<T> {
769        let mut iter = slice.iter();
770        let first = match iter.next() {
771            Some(first) => first,
772            None => return vec![],
773        };
774        let size =
775            slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
776        let mut result = Vec::with_capacity(size);
777        result.extend_from_slice(first.borrow());
778
779        for v in iter {
780            result.extend_from_slice(sep);
781            result.extend_from_slice(v.borrow())
782        }
783        result
784    }
785}
786
787////////////////////////////////////////////////////////////////////////////////
788// Standard trait implementations for slices
789////////////////////////////////////////////////////////////////////////////////
790
791#[stable(feature = "rust1", since = "1.0.0")]
792impl<T, A: Allocator> Borrow<[T]> for Vec<T, A> {
793    fn borrow(&self) -> &[T] {
794        &self[..]
795    }
796}
797
798#[stable(feature = "rust1", since = "1.0.0")]
799impl<T, A: Allocator> BorrowMut<[T]> for Vec<T, A> {
800    fn borrow_mut(&mut self) -> &mut [T] {
801        &mut self[..]
802    }
803}
804
805// Specializable trait for implementing ToOwned::clone_into. This is
806// public in the crate and has the Allocator parameter so that
807// vec::clone_from use it too.
808#[cfg(not(no_global_oom_handling))]
809pub(crate) trait SpecCloneIntoVec<T, A: Allocator> {
810    fn clone_into(&self, target: &mut Vec<T, A>);
811}
812
813#[cfg(not(no_global_oom_handling))]
814impl<T: Clone, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
815    default fn clone_into(&self, target: &mut Vec<T, A>) {
816        // drop anything in target that will not be overwritten
817        target.truncate(self.len());
818
819        // target.len <= self.len due to the truncate above, so the
820        // slices here are always in-bounds.
821        let (init, tail) = self.split_at(target.len());
822
823        // reuse the contained values' allocations/resources.
824        target.clone_from_slice(init);
825        target.extend_from_slice(tail);
826    }
827}
828
829#[cfg(not(no_global_oom_handling))]
830impl<T: TrivialClone, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
831    fn clone_into(&self, target: &mut Vec<T, A>) {
832        target.clear();
833        target.extend_from_slice(self);
834    }
835}
836
837#[cfg(not(no_global_oom_handling))]
838#[stable(feature = "rust1", since = "1.0.0")]
839impl<T: Clone> ToOwned for [T] {
840    type Owned = Vec<T>;
841
842    fn to_owned(&self) -> Vec<T> {
843        self.to_vec()
844    }
845
846    fn clone_into(&self, target: &mut Vec<T>) {
847        SpecCloneIntoVec::clone_into(self, target);
848    }
849}
850
851////////////////////////////////////////////////////////////////////////////////
852// Sorting
853////////////////////////////////////////////////////////////////////////////////
854
855#[inline]
856#[cfg(not(no_global_oom_handling))]
857fn stable_sort<T, F>(v: &mut [T], mut is_less: F)
858where
859    F: FnMut(&T, &T) -> bool,
860{
861    sort::stable::sort::<T, F, Vec<T>>(v, &mut is_less);
862}
863
864#[cfg(not(no_global_oom_handling))]
865#[unstable(issue = "none", feature = "std_internals")]
866impl<T> sort::stable::BufGuard<T> for Vec<T> {
867    fn with_capacity(capacity: usize) -> Self {
868        Vec::with_capacity(capacity)
869    }
870
871    fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<T>] {
872        self.spare_capacity_mut()
873    }
874}