std/num/
f32.rs

1//! Constants for the `f32` single-precision floating point type.
2//!
3//! *[See also the `f32` primitive type](primitive@f32).*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f32` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13#![allow(missing_docs)]
14
15#[stable(feature = "rust1", since = "1.0.0")]
16#[allow(deprecated, deprecated_in_future)]
17pub use core::f32::{
18    DIGITS, EPSILON, INFINITY, MANTISSA_DIGITS, MAX, MAX_10_EXP, MAX_EXP, MIN, MIN_10_EXP, MIN_EXP,
19    MIN_POSITIVE, NAN, NEG_INFINITY, RADIX, consts,
20};
21
22#[cfg(not(test))]
23use crate::intrinsics;
24#[cfg(not(test))]
25use crate::sys::cmath;
26
27#[cfg(not(test))]
28impl f32 {
29    /// Returns the largest integer less than or equal to `self`.
30    ///
31    /// This function always returns the precise result.
32    ///
33    /// # Examples
34    ///
35    /// ```
36    /// let f = 3.7_f32;
37    /// let g = 3.0_f32;
38    /// let h = -3.7_f32;
39    ///
40    /// assert_eq!(f.floor(), 3.0);
41    /// assert_eq!(g.floor(), 3.0);
42    /// assert_eq!(h.floor(), -4.0);
43    /// ```
44    #[rustc_allow_incoherent_impl]
45    #[must_use = "method returns a new number and does not mutate the original value"]
46    #[stable(feature = "rust1", since = "1.0.0")]
47    #[rustc_const_stable(feature = "const_float_round_methods", since = "1.90.0")]
48    #[inline]
49    pub const fn floor(self) -> f32 {
50        core::f32::math::floor(self)
51    }
52
53    /// Returns the smallest integer greater than or equal to `self`.
54    ///
55    /// This function always returns the precise result.
56    ///
57    /// # Examples
58    ///
59    /// ```
60    /// let f = 3.01_f32;
61    /// let g = 4.0_f32;
62    ///
63    /// assert_eq!(f.ceil(), 4.0);
64    /// assert_eq!(g.ceil(), 4.0);
65    /// ```
66    #[doc(alias = "ceiling")]
67    #[rustc_allow_incoherent_impl]
68    #[must_use = "method returns a new number and does not mutate the original value"]
69    #[stable(feature = "rust1", since = "1.0.0")]
70    #[rustc_const_stable(feature = "const_float_round_methods", since = "1.90.0")]
71    #[inline]
72    pub const fn ceil(self) -> f32 {
73        core::f32::math::ceil(self)
74    }
75
76    /// Returns the nearest integer to `self`. If a value is half-way between two
77    /// integers, round away from `0.0`.
78    ///
79    /// This function always returns the precise result.
80    ///
81    /// # Examples
82    ///
83    /// ```
84    /// let f = 3.3_f32;
85    /// let g = -3.3_f32;
86    /// let h = -3.7_f32;
87    /// let i = 3.5_f32;
88    /// let j = 4.5_f32;
89    ///
90    /// assert_eq!(f.round(), 3.0);
91    /// assert_eq!(g.round(), -3.0);
92    /// assert_eq!(h.round(), -4.0);
93    /// assert_eq!(i.round(), 4.0);
94    /// assert_eq!(j.round(), 5.0);
95    /// ```
96    #[rustc_allow_incoherent_impl]
97    #[must_use = "method returns a new number and does not mutate the original value"]
98    #[stable(feature = "rust1", since = "1.0.0")]
99    #[rustc_const_stable(feature = "const_float_round_methods", since = "1.90.0")]
100    #[inline]
101    pub const fn round(self) -> f32 {
102        core::f32::math::round(self)
103    }
104
105    /// Returns the nearest integer to a number. Rounds half-way cases to the number
106    /// with an even least significant digit.
107    ///
108    /// This function always returns the precise result.
109    ///
110    /// # Examples
111    ///
112    /// ```
113    /// let f = 3.3_f32;
114    /// let g = -3.3_f32;
115    /// let h = 3.5_f32;
116    /// let i = 4.5_f32;
117    ///
118    /// assert_eq!(f.round_ties_even(), 3.0);
119    /// assert_eq!(g.round_ties_even(), -3.0);
120    /// assert_eq!(h.round_ties_even(), 4.0);
121    /// assert_eq!(i.round_ties_even(), 4.0);
122    /// ```
123    #[rustc_allow_incoherent_impl]
124    #[must_use = "method returns a new number and does not mutate the original value"]
125    #[stable(feature = "round_ties_even", since = "1.77.0")]
126    #[rustc_const_stable(feature = "const_float_round_methods", since = "1.90.0")]
127    #[inline]
128    pub const fn round_ties_even(self) -> f32 {
129        core::f32::math::round_ties_even(self)
130    }
131
132    /// Returns the integer part of `self`.
133    /// This means that non-integer numbers are always truncated towards zero.
134    ///
135    /// This function always returns the precise result.
136    ///
137    /// # Examples
138    ///
139    /// ```
140    /// let f = 3.7_f32;
141    /// let g = 3.0_f32;
142    /// let h = -3.7_f32;
143    ///
144    /// assert_eq!(f.trunc(), 3.0);
145    /// assert_eq!(g.trunc(), 3.0);
146    /// assert_eq!(h.trunc(), -3.0);
147    /// ```
148    #[doc(alias = "truncate")]
149    #[rustc_allow_incoherent_impl]
150    #[must_use = "method returns a new number and does not mutate the original value"]
151    #[stable(feature = "rust1", since = "1.0.0")]
152    #[rustc_const_stable(feature = "const_float_round_methods", since = "1.90.0")]
153    #[inline]
154    pub const fn trunc(self) -> f32 {
155        core::f32::math::trunc(self)
156    }
157
158    /// Returns the fractional part of `self`.
159    ///
160    /// This function always returns the precise result.
161    ///
162    /// # Examples
163    ///
164    /// ```
165    /// let x = 3.6_f32;
166    /// let y = -3.6_f32;
167    /// let abs_difference_x = (x.fract() - 0.6).abs();
168    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
169    ///
170    /// assert!(abs_difference_x <= f32::EPSILON);
171    /// assert!(abs_difference_y <= f32::EPSILON);
172    /// ```
173    #[rustc_allow_incoherent_impl]
174    #[must_use = "method returns a new number and does not mutate the original value"]
175    #[stable(feature = "rust1", since = "1.0.0")]
176    #[rustc_const_stable(feature = "const_float_round_methods", since = "1.90.0")]
177    #[inline]
178    pub const fn fract(self) -> f32 {
179        core::f32::math::fract(self)
180    }
181
182    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
183    /// error, yielding a more accurate result than an unfused multiply-add.
184    ///
185    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
186    /// the target architecture has a dedicated `fma` CPU instruction. However,
187    /// this is not always true, and will be heavily dependant on designing
188    /// algorithms with specific target hardware in mind.
189    ///
190    /// # Precision
191    ///
192    /// The result of this operation is guaranteed to be the rounded
193    /// infinite-precision result. It is specified by IEEE 754 as
194    /// `fusedMultiplyAdd` and guaranteed not to change.
195    ///
196    /// # Examples
197    ///
198    /// ```
199    /// let m = 10.0_f32;
200    /// let x = 4.0_f32;
201    /// let b = 60.0_f32;
202    ///
203    /// assert_eq!(m.mul_add(x, b), 100.0);
204    /// assert_eq!(m * x + b, 100.0);
205    ///
206    /// let one_plus_eps = 1.0_f32 + f32::EPSILON;
207    /// let one_minus_eps = 1.0_f32 - f32::EPSILON;
208    /// let minus_one = -1.0_f32;
209    ///
210    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
211    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f32::EPSILON * f32::EPSILON);
212    /// // Different rounding with the non-fused multiply and add.
213    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
214    /// ```
215    #[rustc_allow_incoherent_impl]
216    #[doc(alias = "fmaf", alias = "fusedMultiplyAdd")]
217    #[must_use = "method returns a new number and does not mutate the original value"]
218    #[stable(feature = "rust1", since = "1.0.0")]
219    #[inline]
220    #[rustc_const_unstable(feature = "const_mul_add", issue = "146724")]
221    pub const fn mul_add(self, a: f32, b: f32) -> f32 {
222        core::f32::math::mul_add(self, a, b)
223    }
224
225    /// Calculates Euclidean division, the matching method for `rem_euclid`.
226    ///
227    /// This computes the integer `n` such that
228    /// `self = n * rhs + self.rem_euclid(rhs)`.
229    /// In other words, the result is `self / rhs` rounded to the integer `n`
230    /// such that `self >= n * rhs`.
231    ///
232    /// # Precision
233    ///
234    /// The result of this operation is guaranteed to be the rounded
235    /// infinite-precision result.
236    ///
237    /// # Examples
238    ///
239    /// ```
240    /// let a: f32 = 7.0;
241    /// let b = 4.0;
242    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
243    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
244    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
245    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
246    /// ```
247    #[rustc_allow_incoherent_impl]
248    #[must_use = "method returns a new number and does not mutate the original value"]
249    #[inline]
250    #[stable(feature = "euclidean_division", since = "1.38.0")]
251    pub fn div_euclid(self, rhs: f32) -> f32 {
252        core::f32::math::div_euclid(self, rhs)
253    }
254
255    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
256    ///
257    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
258    /// most cases. However, due to a floating point round-off error it can
259    /// result in `r == rhs.abs()`, violating the mathematical definition, if
260    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
261    /// This result is not an element of the function's codomain, but it is the
262    /// closest floating point number in the real numbers and thus fulfills the
263    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
264    /// approximately.
265    ///
266    /// # Precision
267    ///
268    /// The result of this operation is guaranteed to be the rounded
269    /// infinite-precision result.
270    ///
271    /// # Examples
272    ///
273    /// ```
274    /// let a: f32 = 7.0;
275    /// let b = 4.0;
276    /// assert_eq!(a.rem_euclid(b), 3.0);
277    /// assert_eq!((-a).rem_euclid(b), 1.0);
278    /// assert_eq!(a.rem_euclid(-b), 3.0);
279    /// assert_eq!((-a).rem_euclid(-b), 1.0);
280    /// // limitation due to round-off error
281    /// assert!((-f32::EPSILON).rem_euclid(3.0) != 0.0);
282    /// ```
283    #[doc(alias = "modulo", alias = "mod")]
284    #[rustc_allow_incoherent_impl]
285    #[must_use = "method returns a new number and does not mutate the original value"]
286    #[inline]
287    #[stable(feature = "euclidean_division", since = "1.38.0")]
288    pub fn rem_euclid(self, rhs: f32) -> f32 {
289        core::f32::math::rem_euclid(self, rhs)
290    }
291
292    /// Raises a number to an integer power.
293    ///
294    /// Using this function is generally faster than using `powf`.
295    /// It might have a different sequence of rounding operations than `powf`,
296    /// so the results are not guaranteed to agree.
297    ///
298    /// Note that this function is special in that it can return non-NaN results for NaN inputs. For
299    /// example, `f32::powi(f32::NAN, 0)` returns `1.0`. However, if an input is a *signaling*
300    /// NaN, then the result is non-deterministically either a NaN or the result that the
301    /// corresponding quiet NaN would produce.
302    ///
303    /// # Unspecified precision
304    ///
305    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
306    /// can even differ within the same execution from one invocation to the next.
307    ///
308    /// # Examples
309    ///
310    /// ```
311    /// let x = 2.0_f32;
312    /// let abs_difference = (x.powi(2) - (x * x)).abs();
313    /// assert!(abs_difference <= 1e-5);
314    ///
315    /// assert_eq!(f32::powi(f32::NAN, 0), 1.0);
316    /// assert_eq!(f32::powi(0.0, 0), 1.0);
317    /// ```
318    #[rustc_allow_incoherent_impl]
319    #[must_use = "method returns a new number and does not mutate the original value"]
320    #[stable(feature = "rust1", since = "1.0.0")]
321    #[inline]
322    pub fn powi(self, n: i32) -> f32 {
323        core::f32::math::powi(self, n)
324    }
325
326    /// Raises a number to a floating point power.
327    ///
328    /// Note that this function is special in that it can return non-NaN results for NaN inputs. For
329    /// example, `f32::powf(f32::NAN, 0.0)` returns `1.0`. However, if an input is a *signaling*
330    /// NaN, then the result is non-deterministically either a NaN or the result that the
331    /// corresponding quiet NaN would produce.
332    ///
333    /// # Unspecified precision
334    ///
335    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
336    /// can even differ within the same execution from one invocation to the next.
337    ///
338    /// # Examples
339    ///
340    /// ```
341    /// let x = 2.0_f32;
342    /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
343    /// assert!(abs_difference <= 1e-5);
344    ///
345    /// assert_eq!(f32::powf(1.0, f32::NAN), 1.0);
346    /// assert_eq!(f32::powf(f32::NAN, 0.0), 1.0);
347    /// assert_eq!(f32::powf(0.0, 0.0), 1.0);
348    /// ```
349    #[rustc_allow_incoherent_impl]
350    #[must_use = "method returns a new number and does not mutate the original value"]
351    #[stable(feature = "rust1", since = "1.0.0")]
352    #[inline]
353    pub fn powf(self, n: f32) -> f32 {
354        intrinsics::powf32(self, n)
355    }
356
357    /// Returns the square root of a number.
358    ///
359    /// Returns NaN if `self` is a negative number other than `-0.0`.
360    ///
361    /// # Precision
362    ///
363    /// The result of this operation is guaranteed to be the rounded
364    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
365    /// and guaranteed not to change.
366    ///
367    /// # Examples
368    ///
369    /// ```
370    /// let positive = 4.0_f32;
371    /// let negative = -4.0_f32;
372    /// let negative_zero = -0.0_f32;
373    ///
374    /// assert_eq!(positive.sqrt(), 2.0);
375    /// assert!(negative.sqrt().is_nan());
376    /// assert!(negative_zero.sqrt() == negative_zero);
377    /// ```
378    #[doc(alias = "squareRoot")]
379    #[rustc_allow_incoherent_impl]
380    #[must_use = "method returns a new number and does not mutate the original value"]
381    #[stable(feature = "rust1", since = "1.0.0")]
382    #[inline]
383    pub fn sqrt(self) -> f32 {
384        core::f32::math::sqrt(self)
385    }
386
387    /// Returns `e^(self)`, (the exponential function).
388    ///
389    /// # Unspecified precision
390    ///
391    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
392    /// can even differ within the same execution from one invocation to the next.
393    ///
394    /// # Examples
395    ///
396    /// ```
397    /// let one = 1.0f32;
398    /// // e^1
399    /// let e = one.exp();
400    ///
401    /// // ln(e) - 1 == 0
402    /// let abs_difference = (e.ln() - 1.0).abs();
403    ///
404    /// assert!(abs_difference <= 1e-6);
405    /// ```
406    #[rustc_allow_incoherent_impl]
407    #[must_use = "method returns a new number and does not mutate the original value"]
408    #[stable(feature = "rust1", since = "1.0.0")]
409    #[inline]
410    pub fn exp(self) -> f32 {
411        intrinsics::expf32(self)
412    }
413
414    /// Returns `2^(self)`.
415    ///
416    /// # Unspecified precision
417    ///
418    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
419    /// can even differ within the same execution from one invocation to the next.
420    ///
421    /// # Examples
422    ///
423    /// ```
424    /// let f = 2.0f32;
425    ///
426    /// // 2^2 - 4 == 0
427    /// let abs_difference = (f.exp2() - 4.0).abs();
428    ///
429    /// assert!(abs_difference <= 1e-5);
430    /// ```
431    #[rustc_allow_incoherent_impl]
432    #[must_use = "method returns a new number and does not mutate the original value"]
433    #[stable(feature = "rust1", since = "1.0.0")]
434    #[inline]
435    pub fn exp2(self) -> f32 {
436        intrinsics::exp2f32(self)
437    }
438
439    /// Returns the natural logarithm of the number.
440    ///
441    /// This returns NaN when the number is negative, and negative infinity when number is zero.
442    ///
443    /// # Unspecified precision
444    ///
445    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
446    /// can even differ within the same execution from one invocation to the next.
447    ///
448    /// # Examples
449    ///
450    /// ```
451    /// let one = 1.0f32;
452    /// // e^1
453    /// let e = one.exp();
454    ///
455    /// // ln(e) - 1 == 0
456    /// let abs_difference = (e.ln() - 1.0).abs();
457    ///
458    /// assert!(abs_difference <= 1e-6);
459    /// ```
460    ///
461    /// Non-positive values:
462    /// ```
463    /// assert_eq!(0_f32.ln(), f32::NEG_INFINITY);
464    /// assert!((-42_f32).ln().is_nan());
465    /// ```
466    #[rustc_allow_incoherent_impl]
467    #[must_use = "method returns a new number and does not mutate the original value"]
468    #[stable(feature = "rust1", since = "1.0.0")]
469    #[inline]
470    pub fn ln(self) -> f32 {
471        intrinsics::logf32(self)
472    }
473
474    /// Returns the logarithm of the number with respect to an arbitrary base.
475    ///
476    /// This returns NaN when the number is negative, and negative infinity when number is zero.
477    ///
478    /// The result might not be correctly rounded owing to implementation details;
479    /// `self.log2()` can produce more accurate results for base 2, and
480    /// `self.log10()` can produce more accurate results for base 10.
481    ///
482    /// # Unspecified precision
483    ///
484    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
485    /// can even differ within the same execution from one invocation to the next.
486    ///
487    /// # Examples
488    ///
489    /// ```
490    /// let five = 5.0f32;
491    ///
492    /// // log5(5) - 1 == 0
493    /// let abs_difference = (five.log(5.0) - 1.0).abs();
494    ///
495    /// assert!(abs_difference <= 1e-6);
496    /// ```
497    ///
498    /// Non-positive values:
499    /// ```
500    /// assert_eq!(0_f32.log(10.0), f32::NEG_INFINITY);
501    /// assert!((-42_f32).log(10.0).is_nan());
502    /// ```
503    #[rustc_allow_incoherent_impl]
504    #[must_use = "method returns a new number and does not mutate the original value"]
505    #[stable(feature = "rust1", since = "1.0.0")]
506    #[inline]
507    pub fn log(self, base: f32) -> f32 {
508        self.ln() / base.ln()
509    }
510
511    /// Returns the base 2 logarithm of the number.
512    ///
513    /// This returns NaN when the number is negative, and negative infinity when number is zero.
514    ///
515    /// # Unspecified precision
516    ///
517    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
518    /// can even differ within the same execution from one invocation to the next.
519    ///
520    /// # Examples
521    ///
522    /// ```
523    /// let two = 2.0f32;
524    ///
525    /// // log2(2) - 1 == 0
526    /// let abs_difference = (two.log2() - 1.0).abs();
527    ///
528    /// assert!(abs_difference <= 1e-6);
529    /// ```
530    ///
531    /// Non-positive values:
532    /// ```
533    /// assert_eq!(0_f32.log2(), f32::NEG_INFINITY);
534    /// assert!((-42_f32).log2().is_nan());
535    /// ```
536    #[rustc_allow_incoherent_impl]
537    #[must_use = "method returns a new number and does not mutate the original value"]
538    #[stable(feature = "rust1", since = "1.0.0")]
539    #[inline]
540    pub fn log2(self) -> f32 {
541        intrinsics::log2f32(self)
542    }
543
544    /// Returns the base 10 logarithm of the number.
545    ///
546    /// This returns NaN when the number is negative, and negative infinity when number is zero.
547    ///
548    /// # Unspecified precision
549    ///
550    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
551    /// can even differ within the same execution from one invocation to the next.
552    ///
553    /// # Examples
554    ///
555    /// ```
556    /// let ten = 10.0f32;
557    ///
558    /// // log10(10) - 1 == 0
559    /// let abs_difference = (ten.log10() - 1.0).abs();
560    ///
561    /// assert!(abs_difference <= 1e-6);
562    /// ```
563    ///
564    /// Non-positive values:
565    /// ```
566    /// assert_eq!(0_f32.log10(), f32::NEG_INFINITY);
567    /// assert!((-42_f32).log10().is_nan());
568    /// ```
569    #[rustc_allow_incoherent_impl]
570    #[must_use = "method returns a new number and does not mutate the original value"]
571    #[stable(feature = "rust1", since = "1.0.0")]
572    #[inline]
573    pub fn log10(self) -> f32 {
574        intrinsics::log10f32(self)
575    }
576
577    /// The positive difference of two numbers.
578    ///
579    /// * If `self <= other`: `0.0`
580    /// * Else: `self - other`
581    ///
582    /// # Unspecified precision
583    ///
584    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
585    /// can even differ within the same execution from one invocation to the next.
586    /// This function currently corresponds to the `fdimf` from libc on Unix
587    /// and Windows. Note that this might change in the future.
588    ///
589    /// # Examples
590    ///
591    /// ```
592    /// let x = 3.0f32;
593    /// let y = -3.0f32;
594    ///
595    /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
596    /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
597    ///
598    /// assert!(abs_difference_x <= 1e-6);
599    /// assert!(abs_difference_y <= 1e-6);
600    /// ```
601    #[rustc_allow_incoherent_impl]
602    #[must_use = "method returns a new number and does not mutate the original value"]
603    #[stable(feature = "rust1", since = "1.0.0")]
604    #[inline]
605    #[deprecated(
606        since = "1.10.0",
607        note = "you probably meant `(self - other).abs()`: \
608                this operation is `(self - other).max(0.0)` \
609                except that `abs_sub` also propagates NaNs (also \
610                known as `fdimf` in C). If you truly need the positive \
611                difference, consider using that expression or the C function \
612                `fdimf`, depending on how you wish to handle NaN (please consider \
613                filing an issue describing your use-case too)."
614    )]
615    pub fn abs_sub(self, other: f32) -> f32 {
616        #[allow(deprecated)]
617        core::f32::math::abs_sub(self, other)
618    }
619
620    /// Returns the cube root of a number.
621    ///
622    /// # Unspecified precision
623    ///
624    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
625    /// can even differ within the same execution from one invocation to the next.
626    /// This function currently corresponds to the `cbrtf` from libc on Unix
627    /// and Windows. Note that this might change in the future.
628    ///
629    /// # Examples
630    ///
631    /// ```
632    /// let x = 8.0f32;
633    ///
634    /// // x^(1/3) - 2 == 0
635    /// let abs_difference = (x.cbrt() - 2.0).abs();
636    ///
637    /// assert!(abs_difference <= 1e-6);
638    /// ```
639    #[rustc_allow_incoherent_impl]
640    #[must_use = "method returns a new number and does not mutate the original value"]
641    #[stable(feature = "rust1", since = "1.0.0")]
642    #[inline]
643    pub fn cbrt(self) -> f32 {
644        core::f32::math::cbrt(self)
645    }
646
647    /// Compute the distance between the origin and a point (`x`, `y`) on the
648    /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
649    /// right-angle triangle with other sides having length `x.abs()` and
650    /// `y.abs()`.
651    ///
652    /// # Unspecified precision
653    ///
654    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
655    /// can even differ within the same execution from one invocation to the next.
656    /// This function currently corresponds to the `hypotf` from libc on Unix
657    /// and Windows. Note that this might change in the future.
658    ///
659    /// # Examples
660    ///
661    /// ```
662    /// let x = 2.0f32;
663    /// let y = 3.0f32;
664    ///
665    /// // sqrt(x^2 + y^2)
666    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
667    ///
668    /// assert!(abs_difference <= 1e-5);
669    /// ```
670    #[rustc_allow_incoherent_impl]
671    #[must_use = "method returns a new number and does not mutate the original value"]
672    #[stable(feature = "rust1", since = "1.0.0")]
673    #[inline]
674    pub fn hypot(self, other: f32) -> f32 {
675        cmath::hypotf(self, other)
676    }
677
678    /// Computes the sine of a number (in radians).
679    ///
680    /// # Unspecified precision
681    ///
682    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
683    /// can even differ within the same execution from one invocation to the next.
684    ///
685    /// # Examples
686    ///
687    /// ```
688    /// let x = std::f32::consts::FRAC_PI_2;
689    ///
690    /// let abs_difference = (x.sin() - 1.0).abs();
691    ///
692    /// assert!(abs_difference <= 1e-6);
693    /// ```
694    #[rustc_allow_incoherent_impl]
695    #[must_use = "method returns a new number and does not mutate the original value"]
696    #[stable(feature = "rust1", since = "1.0.0")]
697    #[inline]
698    pub fn sin(self) -> f32 {
699        intrinsics::sinf32(self)
700    }
701
702    /// Computes the cosine of a number (in radians).
703    ///
704    /// # Unspecified precision
705    ///
706    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
707    /// can even differ within the same execution from one invocation to the next.
708    ///
709    /// # Examples
710    ///
711    /// ```
712    /// let x = 2.0 * std::f32::consts::PI;
713    ///
714    /// let abs_difference = (x.cos() - 1.0).abs();
715    ///
716    /// assert!(abs_difference <= 1e-6);
717    /// ```
718    #[rustc_allow_incoherent_impl]
719    #[must_use = "method returns a new number and does not mutate the original value"]
720    #[stable(feature = "rust1", since = "1.0.0")]
721    #[inline]
722    pub fn cos(self) -> f32 {
723        intrinsics::cosf32(self)
724    }
725
726    /// Computes the tangent of a number (in radians).
727    ///
728    /// # Unspecified precision
729    ///
730    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
731    /// can even differ within the same execution from one invocation to the next.
732    /// This function currently corresponds to the `tanf` from libc on Unix and
733    /// Windows. Note that this might change in the future.
734    ///
735    /// # Examples
736    ///
737    /// ```
738    /// let x = std::f32::consts::FRAC_PI_4;
739    /// let abs_difference = (x.tan() - 1.0).abs();
740    ///
741    /// assert!(abs_difference <= 1e-6);
742    /// ```
743    #[rustc_allow_incoherent_impl]
744    #[must_use = "method returns a new number and does not mutate the original value"]
745    #[stable(feature = "rust1", since = "1.0.0")]
746    #[inline]
747    pub fn tan(self) -> f32 {
748        cmath::tanf(self)
749    }
750
751    /// Computes the arcsine of a number. Return value is in radians in
752    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
753    /// [-1, 1].
754    ///
755    /// # Unspecified precision
756    ///
757    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
758    /// can even differ within the same execution from one invocation to the next.
759    /// This function currently corresponds to the `asinf` from libc on Unix
760    /// and Windows. Note that this might change in the future.
761    ///
762    /// # Examples
763    ///
764    /// ```
765    /// let f = std::f32::consts::FRAC_PI_4;
766    ///
767    /// // asin(sin(pi/2))
768    /// let abs_difference = (f.sin().asin() - f).abs();
769    ///
770    /// assert!(abs_difference <= 1e-6);
771    /// ```
772    #[doc(alias = "arcsin")]
773    #[rustc_allow_incoherent_impl]
774    #[must_use = "method returns a new number and does not mutate the original value"]
775    #[stable(feature = "rust1", since = "1.0.0")]
776    #[inline]
777    pub fn asin(self) -> f32 {
778        cmath::asinf(self)
779    }
780
781    /// Computes the arccosine of a number. Return value is in radians in
782    /// the range [0, pi] or NaN if the number is outside the range
783    /// [-1, 1].
784    ///
785    /// # Unspecified precision
786    ///
787    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
788    /// can even differ within the same execution from one invocation to the next.
789    /// This function currently corresponds to the `acosf` from libc on Unix
790    /// and Windows. Note that this might change in the future.
791    ///
792    /// # Examples
793    ///
794    /// ```
795    /// let f = std::f32::consts::FRAC_PI_4;
796    ///
797    /// // acos(cos(pi/4))
798    /// let abs_difference = (f.cos().acos() - std::f32::consts::FRAC_PI_4).abs();
799    ///
800    /// assert!(abs_difference <= 1e-6);
801    /// ```
802    #[doc(alias = "arccos")]
803    #[rustc_allow_incoherent_impl]
804    #[must_use = "method returns a new number and does not mutate the original value"]
805    #[stable(feature = "rust1", since = "1.0.0")]
806    #[inline]
807    pub fn acos(self) -> f32 {
808        cmath::acosf(self)
809    }
810
811    /// Computes the arctangent of a number. Return value is in radians in the
812    /// range [-pi/2, pi/2];
813    ///
814    /// # Unspecified precision
815    ///
816    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
817    /// can even differ within the same execution from one invocation to the next.
818    /// This function currently corresponds to the `atanf` from libc on Unix
819    /// and Windows. Note that this might change in the future.
820    ///
821    /// # Examples
822    ///
823    /// ```
824    /// let f = 1.0f32;
825    ///
826    /// // atan(tan(1))
827    /// let abs_difference = (f.tan().atan() - 1.0).abs();
828    ///
829    /// assert!(abs_difference <= 1e-6);
830    /// ```
831    #[doc(alias = "arctan")]
832    #[rustc_allow_incoherent_impl]
833    #[must_use = "method returns a new number and does not mutate the original value"]
834    #[stable(feature = "rust1", since = "1.0.0")]
835    #[inline]
836    pub fn atan(self) -> f32 {
837        cmath::atanf(self)
838    }
839
840    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
841    ///
842    ///  | `x`     | `y`     | Piecewise Definition | Range         |
843    ///  |---------|---------|----------------------|---------------|
844    ///  | `>= +0` | `>= +0` | `arctan(y/x)`        | `[+0, +pi/2]` |
845    ///  | `>= +0` | `<= -0` | `arctan(y/x)`        | `[-pi/2, -0]` |
846    ///  | `<= -0` | `>= +0` | `arctan(y/x) + pi`   | `[+pi/2, +pi]`|
847    ///  | `<= -0` | `<= -0` | `arctan(y/x) - pi`   | `[-pi, -pi/2]`|
848    ///
849    /// # Unspecified precision
850    ///
851    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
852    /// can even differ within the same execution from one invocation to the next.
853    /// This function currently corresponds to the `atan2f` from libc on Unix
854    /// and Windows. Note that this might change in the future.
855    ///
856    /// # Examples
857    ///
858    /// ```
859    /// // Positive angles measured counter-clockwise
860    /// // from positive x axis
861    /// // -pi/4 radians (45 deg clockwise)
862    /// let x1 = 3.0f32;
863    /// let y1 = -3.0f32;
864    ///
865    /// // 3pi/4 radians (135 deg counter-clockwise)
866    /// let x2 = -3.0f32;
867    /// let y2 = 3.0f32;
868    ///
869    /// let abs_difference_1 = (y1.atan2(x1) - (-std::f32::consts::FRAC_PI_4)).abs();
870    /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f32::consts::FRAC_PI_4)).abs();
871    ///
872    /// assert!(abs_difference_1 <= 1e-5);
873    /// assert!(abs_difference_2 <= 1e-5);
874    /// ```
875    #[rustc_allow_incoherent_impl]
876    #[must_use = "method returns a new number and does not mutate the original value"]
877    #[stable(feature = "rust1", since = "1.0.0")]
878    #[inline]
879    pub fn atan2(self, other: f32) -> f32 {
880        cmath::atan2f(self, other)
881    }
882
883    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
884    /// `(sin(x), cos(x))`.
885    ///
886    /// # Unspecified precision
887    ///
888    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
889    /// can even differ within the same execution from one invocation to the next.
890    /// This function currently corresponds to the `(f32::sin(x),
891    /// f32::cos(x))`. Note that this might change in the future.
892    ///
893    /// # Examples
894    ///
895    /// ```
896    /// let x = std::f32::consts::FRAC_PI_4;
897    /// let f = x.sin_cos();
898    ///
899    /// let abs_difference_0 = (f.0 - x.sin()).abs();
900    /// let abs_difference_1 = (f.1 - x.cos()).abs();
901    ///
902    /// assert!(abs_difference_0 <= 1e-4);
903    /// assert!(abs_difference_1 <= 1e-4);
904    /// ```
905    #[doc(alias = "sincos")]
906    #[rustc_allow_incoherent_impl]
907    #[stable(feature = "rust1", since = "1.0.0")]
908    #[inline]
909    pub fn sin_cos(self) -> (f32, f32) {
910        (self.sin(), self.cos())
911    }
912
913    /// Returns `e^(self) - 1` in a way that is accurate even if the
914    /// number is close to zero.
915    ///
916    /// # Unspecified precision
917    ///
918    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
919    /// can even differ within the same execution from one invocation to the next.
920    /// This function currently corresponds to the `expm1f` from libc on Unix
921    /// and Windows. Note that this might change in the future.
922    ///
923    /// # Examples
924    ///
925    /// ```
926    /// let x = 1e-8_f32;
927    ///
928    /// // for very small x, e^x is approximately 1 + x + x^2 / 2
929    /// let approx = x + x * x / 2.0;
930    /// let abs_difference = (x.exp_m1() - approx).abs();
931    ///
932    /// assert!(abs_difference < 1e-10);
933    /// ```
934    #[rustc_allow_incoherent_impl]
935    #[must_use = "method returns a new number and does not mutate the original value"]
936    #[stable(feature = "rust1", since = "1.0.0")]
937    #[inline]
938    pub fn exp_m1(self) -> f32 {
939        cmath::expm1f(self)
940    }
941
942    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
943    /// the operations were performed separately.
944    ///
945    /// This returns NaN when `n < -1.0`, and negative infinity when `n == -1.0`.
946    ///
947    /// # Unspecified precision
948    ///
949    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
950    /// can even differ within the same execution from one invocation to the next.
951    /// This function currently corresponds to the `log1pf` from libc on Unix
952    /// and Windows. Note that this might change in the future.
953    ///
954    /// # Examples
955    ///
956    /// ```
957    /// let x = 1e-8_f32;
958    ///
959    /// // for very small x, ln(1 + x) is approximately x - x^2 / 2
960    /// let approx = x - x * x / 2.0;
961    /// let abs_difference = (x.ln_1p() - approx).abs();
962    ///
963    /// assert!(abs_difference < 1e-10);
964    /// ```
965    ///
966    /// Out-of-range values:
967    /// ```
968    /// assert_eq!((-1.0_f32).ln_1p(), f32::NEG_INFINITY);
969    /// assert!((-2.0_f32).ln_1p().is_nan());
970    /// ```
971    #[doc(alias = "log1p")]
972    #[rustc_allow_incoherent_impl]
973    #[must_use = "method returns a new number and does not mutate the original value"]
974    #[stable(feature = "rust1", since = "1.0.0")]
975    #[inline]
976    pub fn ln_1p(self) -> f32 {
977        cmath::log1pf(self)
978    }
979
980    /// Hyperbolic sine function.
981    ///
982    /// # Unspecified precision
983    ///
984    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
985    /// can even differ within the same execution from one invocation to the next.
986    /// This function currently corresponds to the `sinhf` from libc on Unix
987    /// and Windows. Note that this might change in the future.
988    ///
989    /// # Examples
990    ///
991    /// ```
992    /// let e = std::f32::consts::E;
993    /// let x = 1.0f32;
994    ///
995    /// let f = x.sinh();
996    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
997    /// let g = ((e * e) - 1.0) / (2.0 * e);
998    /// let abs_difference = (f - g).abs();
999    ///
1000    /// assert!(abs_difference <= 1e-6);
1001    /// ```
1002    #[rustc_allow_incoherent_impl]
1003    #[must_use = "method returns a new number and does not mutate the original value"]
1004    #[stable(feature = "rust1", since = "1.0.0")]
1005    #[inline]
1006    pub fn sinh(self) -> f32 {
1007        cmath::sinhf(self)
1008    }
1009
1010    /// Hyperbolic cosine function.
1011    ///
1012    /// # Unspecified precision
1013    ///
1014    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1015    /// can even differ within the same execution from one invocation to the next.
1016    /// This function currently corresponds to the `coshf` from libc on Unix
1017    /// and Windows. Note that this might change in the future.
1018    ///
1019    /// # Examples
1020    ///
1021    /// ```
1022    /// let e = std::f32::consts::E;
1023    /// let x = 1.0f32;
1024    /// let f = x.cosh();
1025    /// // Solving cosh() at 1 gives this result
1026    /// let g = ((e * e) + 1.0) / (2.0 * e);
1027    /// let abs_difference = (f - g).abs();
1028    ///
1029    /// // Same result
1030    /// assert!(abs_difference <= 1e-6);
1031    /// ```
1032    #[rustc_allow_incoherent_impl]
1033    #[must_use = "method returns a new number and does not mutate the original value"]
1034    #[stable(feature = "rust1", since = "1.0.0")]
1035    #[inline]
1036    pub fn cosh(self) -> f32 {
1037        cmath::coshf(self)
1038    }
1039
1040    /// Hyperbolic tangent function.
1041    ///
1042    /// # Unspecified precision
1043    ///
1044    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1045    /// can even differ within the same execution from one invocation to the next.
1046    /// This function currently corresponds to the `tanhf` from libc on Unix
1047    /// and Windows. Note that this might change in the future.
1048    ///
1049    /// # Examples
1050    ///
1051    /// ```
1052    /// let e = std::f32::consts::E;
1053    /// let x = 1.0f32;
1054    ///
1055    /// let f = x.tanh();
1056    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
1057    /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
1058    /// let abs_difference = (f - g).abs();
1059    ///
1060    /// assert!(abs_difference <= 1e-6);
1061    /// ```
1062    #[rustc_allow_incoherent_impl]
1063    #[must_use = "method returns a new number and does not mutate the original value"]
1064    #[stable(feature = "rust1", since = "1.0.0")]
1065    #[inline]
1066    pub fn tanh(self) -> f32 {
1067        cmath::tanhf(self)
1068    }
1069
1070    /// Inverse hyperbolic sine function.
1071    ///
1072    /// # Unspecified precision
1073    ///
1074    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1075    /// can even differ within the same execution from one invocation to the next.
1076    ///
1077    /// # Examples
1078    ///
1079    /// ```
1080    /// let x = 1.0f32;
1081    /// let f = x.sinh().asinh();
1082    ///
1083    /// let abs_difference = (f - x).abs();
1084    ///
1085    /// assert!(abs_difference <= 1e-6);
1086    /// ```
1087    #[doc(alias = "arcsinh")]
1088    #[rustc_allow_incoherent_impl]
1089    #[must_use = "method returns a new number and does not mutate the original value"]
1090    #[stable(feature = "rust1", since = "1.0.0")]
1091    #[inline]
1092    pub fn asinh(self) -> f32 {
1093        let ax = self.abs();
1094        let ix = 1.0 / ax;
1095        (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
1096    }
1097
1098    /// Inverse hyperbolic cosine function.
1099    ///
1100    /// # Unspecified precision
1101    ///
1102    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1103    /// can even differ within the same execution from one invocation to the next.
1104    ///
1105    /// # Examples
1106    ///
1107    /// ```
1108    /// let x = 1.0f32;
1109    /// let f = x.cosh().acosh();
1110    ///
1111    /// let abs_difference = (f - x).abs();
1112    ///
1113    /// assert!(abs_difference <= 1e-6);
1114    /// ```
1115    #[doc(alias = "arccosh")]
1116    #[rustc_allow_incoherent_impl]
1117    #[must_use = "method returns a new number and does not mutate the original value"]
1118    #[stable(feature = "rust1", since = "1.0.0")]
1119    #[inline]
1120    pub fn acosh(self) -> f32 {
1121        if self < 1.0 {
1122            Self::NAN
1123        } else {
1124            (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
1125        }
1126    }
1127
1128    /// Inverse hyperbolic tangent function.
1129    ///
1130    /// # Unspecified precision
1131    ///
1132    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1133    /// can even differ within the same execution from one invocation to the next.
1134    ///
1135    /// # Examples
1136    ///
1137    /// ```
1138    /// let x = std::f32::consts::FRAC_PI_6;
1139    /// let f = x.tanh().atanh();
1140    ///
1141    /// let abs_difference = (f - x).abs();
1142    ///
1143    /// assert!(abs_difference <= 1e-5);
1144    /// ```
1145    #[doc(alias = "arctanh")]
1146    #[rustc_allow_incoherent_impl]
1147    #[must_use = "method returns a new number and does not mutate the original value"]
1148    #[stable(feature = "rust1", since = "1.0.0")]
1149    #[inline]
1150    pub fn atanh(self) -> f32 {
1151        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
1152    }
1153
1154    /// Gamma function.
1155    ///
1156    /// # Unspecified precision
1157    ///
1158    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1159    /// can even differ within the same execution from one invocation to the next.
1160    /// This function currently corresponds to the `tgammaf` from libc on Unix
1161    /// and Windows. Note that this might change in the future.
1162    ///
1163    /// # Examples
1164    ///
1165    /// ```
1166    /// #![feature(float_gamma)]
1167    /// let x = 5.0f32;
1168    ///
1169    /// let abs_difference = (x.gamma() - 24.0).abs();
1170    ///
1171    /// assert!(abs_difference <= 1e-5);
1172    /// ```
1173    #[rustc_allow_incoherent_impl]
1174    #[must_use = "method returns a new number and does not mutate the original value"]
1175    #[unstable(feature = "float_gamma", issue = "99842")]
1176    #[inline]
1177    pub fn gamma(self) -> f32 {
1178        cmath::tgammaf(self)
1179    }
1180
1181    /// Natural logarithm of the absolute value of the gamma function
1182    ///
1183    /// The integer part of the tuple indicates the sign of the gamma function.
1184    ///
1185    /// # Unspecified precision
1186    ///
1187    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1188    /// can even differ within the same execution from one invocation to the next.
1189    /// This function currently corresponds to the `lgamma_r` from libc on Unix
1190    /// and Windows. Note that this might change in the future.
1191    ///
1192    /// # Examples
1193    ///
1194    /// ```
1195    /// #![feature(float_gamma)]
1196    /// let x = 2.0f32;
1197    ///
1198    /// let abs_difference = (x.ln_gamma().0 - 0.0).abs();
1199    ///
1200    /// assert!(abs_difference <= f32::EPSILON);
1201    /// ```
1202    #[rustc_allow_incoherent_impl]
1203    #[must_use = "method returns a new number and does not mutate the original value"]
1204    #[unstable(feature = "float_gamma", issue = "99842")]
1205    #[inline]
1206    pub fn ln_gamma(self) -> (f32, i32) {
1207        let mut signgamp: i32 = 0;
1208        let x = cmath::lgammaf_r(self, &mut signgamp);
1209        (x, signgamp)
1210    }
1211
1212    /// Error function.
1213    ///
1214    /// # Unspecified precision
1215    ///
1216    /// The precision of this function is non-deterministic. This means it varies by platform,
1217    /// Rust version, and can even differ within the same execution from one invocation to the next.
1218    ///
1219    /// This function currently corresponds to the `erff` from libc on Unix
1220    /// and Windows. Note that this might change in the future.
1221    ///
1222    /// # Examples
1223    ///
1224    /// ```
1225    /// #![feature(float_erf)]
1226    /// /// The error function relates what percent of a normal distribution lies
1227    /// /// within `x` standard deviations (scaled by `1/sqrt(2)`).
1228    /// fn within_standard_deviations(x: f32) -> f32 {
1229    ///     (x * std::f32::consts::FRAC_1_SQRT_2).erf() * 100.0
1230    /// }
1231    ///
1232    /// // 68% of a normal distribution is within one standard deviation
1233    /// assert!((within_standard_deviations(1.0) - 68.269).abs() < 0.01);
1234    /// // 95% of a normal distribution is within two standard deviations
1235    /// assert!((within_standard_deviations(2.0) - 95.450).abs() < 0.01);
1236    /// // 99.7% of a normal distribution is within three standard deviations
1237    /// assert!((within_standard_deviations(3.0) - 99.730).abs() < 0.01);
1238    /// ```
1239    #[rustc_allow_incoherent_impl]
1240    #[must_use = "method returns a new number and does not mutate the original value"]
1241    #[unstable(feature = "float_erf", issue = "136321")]
1242    #[inline]
1243    pub fn erf(self) -> f32 {
1244        cmath::erff(self)
1245    }
1246
1247    /// Complementary error function.
1248    ///
1249    /// # Unspecified precision
1250    ///
1251    /// The precision of this function is non-deterministic. This means it varies by platform,
1252    /// Rust version, and can even differ within the same execution from one invocation to the next.
1253    ///
1254    /// This function currently corresponds to the `erfcf` from libc on Unix
1255    /// and Windows. Note that this might change in the future.
1256    ///
1257    /// # Examples
1258    ///
1259    /// ```
1260    /// #![feature(float_erf)]
1261    /// let x: f32 = 0.123;
1262    ///
1263    /// let one = x.erf() + x.erfc();
1264    /// let abs_difference = (one - 1.0).abs();
1265    ///
1266    /// assert!(abs_difference <= 1e-6);
1267    /// ```
1268    #[rustc_allow_incoherent_impl]
1269    #[must_use = "method returns a new number and does not mutate the original value"]
1270    #[unstable(feature = "float_erf", issue = "136321")]
1271    #[inline]
1272    pub fn erfc(self) -> f32 {
1273        cmath::erfcf(self)
1274    }
1275}