rustc_mir_build/build/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
use itertools::Itertools;
use rustc_abi::{ExternAbi, FieldIdx};
use rustc_apfloat::Float;
use rustc_apfloat::ieee::{Double, Half, Quad, Single};
use rustc_ast::attr;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sorted_map::SortedIndexMultiMap;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::{self as hir, BindingMode, ByRef, HirId, Node};
use rustc_index::bit_set::GrowableBitSet;
use rustc_index::{Idx, IndexSlice, IndexVec};
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_middle::hir::place::PlaceBase as HirPlaceBase;
use rustc_middle::middle::region;
use rustc_middle::mir::*;
use rustc_middle::query::TyCtxtAt;
use rustc_middle::thir::{self, ExprId, LintLevel, LocalVarId, Param, ParamId, PatKind, Thir};
use rustc_middle::ty::{self, ScalarInt, Ty, TyCtxt, TypeVisitableExt, TypingMode};
use rustc_middle::{bug, span_bug};
use rustc_span::symbol::sym;
use rustc_span::{Span, Symbol};
use super::lints;
use crate::build::expr::as_place::PlaceBuilder;
use crate::build::scope::DropKind;
pub(crate) fn closure_saved_names_of_captured_variables<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
) -> IndexVec<FieldIdx, Symbol> {
tcx.closure_captures(def_id)
.iter()
.map(|captured_place| {
let name = captured_place.to_symbol();
match captured_place.info.capture_kind {
ty::UpvarCapture::ByValue => name,
ty::UpvarCapture::ByRef(..) => Symbol::intern(&format!("_ref__{name}")),
}
})
.collect()
}
/// Construct the MIR for a given `DefId`.
pub(crate) fn mir_build<'tcx>(tcx: TyCtxtAt<'tcx>, def: LocalDefId) -> Body<'tcx> {
let tcx = tcx.tcx;
tcx.ensure_with_value().thir_abstract_const(def);
if let Err(e) = tcx.check_match(def) {
return construct_error(tcx, def, e);
}
let body = match tcx.thir_body(def) {
Err(error_reported) => construct_error(tcx, def, error_reported),
Ok((thir, expr)) => {
let build_mir = |thir: &Thir<'tcx>| match thir.body_type {
thir::BodyTy::Fn(fn_sig) => construct_fn(tcx, def, thir, expr, fn_sig),
thir::BodyTy::Const(ty) => construct_const(tcx, def, thir, expr, ty),
};
// this must run before MIR dump, because
// "not all control paths return a value" is reported here.
//
// maybe move the check to a MIR pass?
tcx.ensure().check_liveness(def);
// Don't steal here, instead steal in unsafeck. This is so that
// pattern inline constants can be evaluated as part of building the
// THIR of the parent function without a cycle.
build_mir(&thir.borrow())
}
};
lints::check(tcx, &body);
// The borrow checker will replace all the regions here with its own
// inference variables. There's no point having non-erased regions here.
// The exception is `body.user_type_annotations`, which is used unmodified
// by borrow checking.
debug_assert!(
!(body.local_decls.has_free_regions()
|| body.basic_blocks.has_free_regions()
|| body.var_debug_info.has_free_regions()
|| body.yield_ty().has_free_regions()),
"Unexpected free regions in MIR: {body:?}",
);
body
}
///////////////////////////////////////////////////////////////////////////
// BuildMir -- walks a crate, looking for fn items and methods to build MIR from
#[derive(Debug, PartialEq, Eq)]
enum BlockFrame {
/// Evaluation is currently within a statement.
///
/// Examples include:
/// 1. `EXPR;`
/// 2. `let _ = EXPR;`
/// 3. `let x = EXPR;`
Statement {
/// If true, then statement discards result from evaluating
/// the expression (such as examples 1 and 2 above).
ignores_expr_result: bool,
},
/// Evaluation is currently within the tail expression of a block.
///
/// Example: `{ STMT_1; STMT_2; EXPR }`
TailExpr {
/// If true, then the surrounding context of the block ignores
/// the result of evaluating the block's tail expression.
///
/// Example: `let _ = { STMT_1; EXPR };`
tail_result_is_ignored: bool,
/// `Span` of the tail expression.
span: Span,
},
/// Generic mark meaning that the block occurred as a subexpression
/// where the result might be used.
///
/// Examples: `foo(EXPR)`, `match EXPR { ... }`
SubExpr,
}
impl BlockFrame {
fn is_tail_expr(&self) -> bool {
match *self {
BlockFrame::TailExpr { .. } => true,
BlockFrame::Statement { .. } | BlockFrame::SubExpr => false,
}
}
fn is_statement(&self) -> bool {
match *self {
BlockFrame::Statement { .. } => true,
BlockFrame::TailExpr { .. } | BlockFrame::SubExpr => false,
}
}
}
#[derive(Debug)]
struct BlockContext(Vec<BlockFrame>);
struct Builder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
// FIXME(@lcnr): Why does this use an `infcx`, there should be
// no shared type inference going on here. I feel like it would
// clearer to manually construct one where necessary or to provide
// a nice API for non-type inference trait system checks.
infcx: InferCtxt<'tcx>,
region_scope_tree: &'tcx region::ScopeTree,
param_env: ty::ParamEnv<'tcx>,
thir: &'a Thir<'tcx>,
cfg: CFG<'tcx>,
def_id: LocalDefId,
hir_id: HirId,
parent_module: DefId,
check_overflow: bool,
fn_span: Span,
arg_count: usize,
coroutine: Option<Box<CoroutineInfo<'tcx>>>,
/// The current set of scopes, updated as we traverse;
/// see the `scope` module for more details.
scopes: scope::Scopes<'tcx>,
/// The block-context: each time we build the code within an thir::Block,
/// we push a frame here tracking whether we are building a statement or
/// if we are pushing the tail expression of the block. This is used to
/// embed information in generated temps about whether they were created
/// for a block tail expression or not.
///
/// It would be great if we could fold this into `self.scopes`
/// somehow, but right now I think that is very tightly tied to
/// the code generation in ways that we cannot (or should not)
/// start just throwing new entries onto that vector in order to
/// distinguish the context of EXPR1 from the context of EXPR2 in
/// `{ STMTS; EXPR1 } + EXPR2`.
block_context: BlockContext,
/// The vector of all scopes that we have created thus far;
/// we track this for debuginfo later.
source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
source_scope: SourceScope,
/// The guard-context: each time we build the guard expression for
/// a match arm, we push onto this stack, and then pop when we
/// finish building it.
guard_context: Vec<GuardFrame>,
/// Temporaries with fixed indexes. Used so that if-let guards on arms
/// with an or-pattern are only created once.
fixed_temps: FxHashMap<ExprId, Local>,
/// Scope of temporaries that should be deduplicated using [Self::fixed_temps].
fixed_temps_scope: Option<region::Scope>,
/// Maps `HirId`s of variable bindings to the `Local`s created for them.
/// (A match binding can have two locals; the 2nd is for the arm's guard.)
var_indices: FxHashMap<LocalVarId, LocalsForNode>,
local_decls: IndexVec<Local, LocalDecl<'tcx>>,
canonical_user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
upvars: CaptureMap<'tcx>,
unit_temp: Option<Place<'tcx>>,
var_debug_info: Vec<VarDebugInfo<'tcx>>,
// A cache for `maybe_lint_level_roots_bounded`. That function is called
// repeatedly, and each time it effectively traces a path through a tree
// structure from a node towards the root, doing an attribute check on each
// node along the way. This cache records which nodes trace all the way to
// the root (most of them do) and saves us from retracing many sub-paths
// many times, and rechecking many nodes.
lint_level_roots_cache: GrowableBitSet<hir::ItemLocalId>,
/// Collects additional coverage information during MIR building.
/// Only present if coverage is enabled and this function is eligible.
coverage_info: Option<coverageinfo::CoverageInfoBuilder>,
}
type CaptureMap<'tcx> = SortedIndexMultiMap<usize, HirId, Capture<'tcx>>;
#[derive(Debug)]
struct Capture<'tcx> {
captured_place: &'tcx ty::CapturedPlace<'tcx>,
use_place: Place<'tcx>,
mutability: Mutability,
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn typing_env(&self) -> ty::TypingEnv<'tcx> {
self.infcx.typing_env(self.param_env)
}
fn is_bound_var_in_guard(&self, id: LocalVarId) -> bool {
self.guard_context.iter().any(|frame| frame.locals.iter().any(|local| local.id == id))
}
fn var_local_id(&self, id: LocalVarId, for_guard: ForGuard) -> Local {
self.var_indices[&id].local_id(for_guard)
}
}
impl BlockContext {
fn new() -> Self {
BlockContext(vec![])
}
fn push(&mut self, bf: BlockFrame) {
self.0.push(bf);
}
fn pop(&mut self) -> Option<BlockFrame> {
self.0.pop()
}
/// Traverses the frames on the `BlockContext`, searching for either
/// the first block-tail expression frame with no intervening
/// statement frame.
///
/// Notably, this skips over `SubExpr` frames; this method is
/// meant to be used in the context of understanding the
/// relationship of a temp (created within some complicated
/// expression) with its containing expression, and whether the
/// value of that *containing expression* (not the temp!) is
/// ignored.
fn currently_in_block_tail(&self) -> Option<BlockTailInfo> {
for bf in self.0.iter().rev() {
match bf {
BlockFrame::SubExpr => continue,
BlockFrame::Statement { .. } => break,
&BlockFrame::TailExpr { tail_result_is_ignored, span } => {
return Some(BlockTailInfo { tail_result_is_ignored, span });
}
}
}
None
}
/// Looks at the topmost frame on the BlockContext and reports
/// whether its one that would discard a block tail result.
///
/// Unlike `currently_within_ignored_tail_expression`, this does
/// *not* skip over `SubExpr` frames: here, we want to know
/// whether the block result itself is discarded.
fn currently_ignores_tail_results(&self) -> bool {
match self.0.last() {
// no context: conservatively assume result is read
None => false,
// sub-expression: block result feeds into some computation
Some(BlockFrame::SubExpr) => false,
// otherwise: use accumulated is_ignored state.
Some(
BlockFrame::TailExpr { tail_result_is_ignored: ignored, .. }
| BlockFrame::Statement { ignores_expr_result: ignored },
) => *ignored,
}
}
}
#[derive(Debug)]
enum LocalsForNode {
/// In the usual case, a `HirId` for an identifier maps to at most
/// one `Local` declaration.
One(Local),
/// The exceptional case is identifiers in a match arm's pattern
/// that are referenced in a guard of that match arm. For these,
/// we have `2` Locals.
///
/// * `for_arm_body` is the Local used in the arm body (which is
/// just like the `One` case above),
///
/// * `ref_for_guard` is the Local used in the arm's guard (which
/// is a reference to a temp that is an alias of
/// `for_arm_body`).
ForGuard { ref_for_guard: Local, for_arm_body: Local },
}
#[derive(Debug)]
struct GuardFrameLocal {
id: LocalVarId,
}
impl GuardFrameLocal {
fn new(id: LocalVarId) -> Self {
GuardFrameLocal { id }
}
}
#[derive(Debug)]
struct GuardFrame {
/// These are the id's of names that are bound by patterns of the
/// arm of *this* guard.
///
/// (Frames higher up the stack will have the id's bound in arms
/// further out, such as in a case like:
///
/// match E1 {
/// P1(id1) if (... (match E2 { P2(id2) if ... => B2 })) => B1,
/// }
///
/// here, when building for FIXME.
locals: Vec<GuardFrameLocal>,
}
/// `ForGuard` indicates whether we are talking about:
/// 1. The variable for use outside of guard expressions, or
/// 2. The temp that holds reference to (1.), which is actually what the
/// guard expressions see.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum ForGuard {
RefWithinGuard,
OutsideGuard,
}
impl LocalsForNode {
fn local_id(&self, for_guard: ForGuard) -> Local {
match (self, for_guard) {
(&LocalsForNode::One(local_id), ForGuard::OutsideGuard)
| (
&LocalsForNode::ForGuard { ref_for_guard: local_id, .. },
ForGuard::RefWithinGuard,
)
| (&LocalsForNode::ForGuard { for_arm_body: local_id, .. }, ForGuard::OutsideGuard) => {
local_id
}
(&LocalsForNode::One(_), ForGuard::RefWithinGuard) => {
bug!("anything with one local should never be within a guard.")
}
}
}
}
struct CFG<'tcx> {
basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
}
rustc_index::newtype_index! {
struct ScopeId {}
}
#[derive(Debug)]
enum NeedsTemporary {
/// Use this variant when whatever you are converting with `as_operand`
/// is the last thing you are converting. This means that if we introduced
/// an intermediate temporary, we'd only read it immediately after, so we can
/// also avoid it.
No,
/// For all cases where you aren't sure or that are too expensive to compute
/// for now. It is always safe to fall back to this.
Maybe,
}
///////////////////////////////////////////////////////////////////////////
/// The `BlockAnd` "monad" packages up the new basic block along with a
/// produced value (sometimes just unit, of course). The `unpack!`
/// macro (and methods below) makes working with `BlockAnd` much more
/// convenient.
#[must_use = "if you don't use one of these results, you're leaving a dangling edge"]
struct BlockAnd<T>(BasicBlock, T);
impl BlockAnd<()> {
/// Unpacks `BlockAnd<()>` into a [`BasicBlock`].
#[must_use]
fn into_block(self) -> BasicBlock {
let Self(block, ()) = self;
block
}
}
trait BlockAndExtension {
fn and<T>(self, v: T) -> BlockAnd<T>;
fn unit(self) -> BlockAnd<()>;
}
impl BlockAndExtension for BasicBlock {
fn and<T>(self, v: T) -> BlockAnd<T> {
BlockAnd(self, v)
}
fn unit(self) -> BlockAnd<()> {
BlockAnd(self, ())
}
}
/// Update a block pointer and return the value.
/// Use it like `let x = unpack!(block = self.foo(block, foo))`.
macro_rules! unpack {
($x:ident = $c:expr) => {{
let BlockAnd(b, v) = $c;
$x = b;
v
}};
}
///////////////////////////////////////////////////////////////////////////
/// the main entry point for building MIR for a function
fn construct_fn<'tcx>(
tcx: TyCtxt<'tcx>,
fn_def: LocalDefId,
thir: &Thir<'tcx>,
expr: ExprId,
fn_sig: ty::FnSig<'tcx>,
) -> Body<'tcx> {
let span = tcx.def_span(fn_def);
let fn_id = tcx.local_def_id_to_hir_id(fn_def);
// The representation of thir for `-Zunpretty=thir-tree` relies on
// the entry expression being the last element of `thir.exprs`.
assert_eq!(expr.as_usize(), thir.exprs.len() - 1);
// Figure out what primary body this item has.
let body = tcx.hir().body_owned_by(fn_def);
let span_with_body = tcx.hir().span_with_body(fn_id);
let return_ty_span = tcx
.hir()
.fn_decl_by_hir_id(fn_id)
.unwrap_or_else(|| span_bug!(span, "can't build MIR for {:?}", fn_def))
.output
.span();
let mut abi = fn_sig.abi;
if let DefKind::Closure = tcx.def_kind(fn_def) {
// HACK(eddyb) Avoid having RustCall on closures,
// as it adds unnecessary (and wrong) auto-tupling.
abi = ExternAbi::Rust;
}
let arguments = &thir.params;
let return_ty = fn_sig.output();
let coroutine = match tcx.type_of(fn_def).instantiate_identity().kind() {
ty::Coroutine(_, args) => Some(Box::new(CoroutineInfo::initial(
tcx.coroutine_kind(fn_def).unwrap(),
args.as_coroutine().yield_ty(),
args.as_coroutine().resume_ty(),
))),
ty::Closure(..) | ty::CoroutineClosure(..) | ty::FnDef(..) => None,
ty => span_bug!(span_with_body, "unexpected type of body: {ty:?}"),
};
if let Some(custom_mir_attr) =
tcx.hir().attrs(fn_id).iter().find(|attr| attr.name_or_empty() == sym::custom_mir)
{
return custom::build_custom_mir(
tcx,
fn_def.to_def_id(),
fn_id,
thir,
expr,
arguments,
return_ty,
return_ty_span,
span_with_body,
custom_mir_attr,
);
}
// FIXME(#132279): This should be able to reveal opaque
// types defined during HIR typeck.
let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
let mut builder = Builder::new(
thir,
infcx,
fn_def,
fn_id,
span_with_body,
arguments.len(),
return_ty,
return_ty_span,
coroutine,
);
let call_site_scope =
region::Scope { id: body.id().hir_id.local_id, data: region::ScopeData::CallSite };
let arg_scope =
region::Scope { id: body.id().hir_id.local_id, data: region::ScopeData::Arguments };
let source_info = builder.source_info(span);
let call_site_s = (call_site_scope, source_info);
let _: BlockAnd<()> = builder.in_scope(call_site_s, LintLevel::Inherited, |builder| {
let arg_scope_s = (arg_scope, source_info);
// Attribute epilogue to function's closing brace
let fn_end = span_with_body.shrink_to_hi();
let return_block = builder
.in_breakable_scope(None, Place::return_place(), fn_end, |builder| {
Some(builder.in_scope(arg_scope_s, LintLevel::Inherited, |builder| {
builder.args_and_body(START_BLOCK, arguments, arg_scope, expr)
}))
})
.into_block();
let source_info = builder.source_info(fn_end);
builder.cfg.terminate(return_block, source_info, TerminatorKind::Return);
builder.build_drop_trees();
return_block.unit()
});
let mut body = builder.finish();
body.spread_arg = if abi == ExternAbi::RustCall {
// RustCall pseudo-ABI untuples the last argument.
Some(Local::new(arguments.len()))
} else {
None
};
body
}
fn construct_const<'a, 'tcx>(
tcx: TyCtxt<'tcx>,
def: LocalDefId,
thir: &'a Thir<'tcx>,
expr: ExprId,
const_ty: Ty<'tcx>,
) -> Body<'tcx> {
let hir_id = tcx.local_def_id_to_hir_id(def);
// Figure out what primary body this item has.
let (span, const_ty_span) = match tcx.hir_node(hir_id) {
Node::Item(hir::Item {
kind: hir::ItemKind::Static(ty, _, _) | hir::ItemKind::Const(ty, _, _),
span,
..
})
| Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(ty, _), span, .. })
| Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Const(ty, Some(_)),
span,
..
}) => (*span, ty.span),
Node::AnonConst(ct) => (ct.span, ct.span),
Node::ConstBlock(_) => {
let span = tcx.def_span(def);
(span, span)
}
_ => span_bug!(tcx.def_span(def), "can't build MIR for {:?}", def),
};
// FIXME(#132279): We likely want to be able to use the hidden types of
// opaques used by this function here.
let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
let mut builder =
Builder::new(thir, infcx, def, hir_id, span, 0, const_ty, const_ty_span, None);
let mut block = START_BLOCK;
block = builder.expr_into_dest(Place::return_place(), block, expr).into_block();
let source_info = builder.source_info(span);
builder.cfg.terminate(block, source_info, TerminatorKind::Return);
builder.build_drop_trees();
builder.finish()
}
/// Construct MIR for an item that has had errors in type checking.
///
/// This is required because we may still want to run MIR passes on an item
/// with type errors, but normal MIR construction can't handle that in general.
fn construct_error(tcx: TyCtxt<'_>, def_id: LocalDefId, guar: ErrorGuaranteed) -> Body<'_> {
let span = tcx.def_span(def_id);
let hir_id = tcx.local_def_id_to_hir_id(def_id);
let (inputs, output, coroutine) = match tcx.def_kind(def_id) {
DefKind::Const
| DefKind::AssocConst
| DefKind::AnonConst
| DefKind::InlineConst
| DefKind::Static { .. } => (vec![], tcx.type_of(def_id).instantiate_identity(), None),
DefKind::Ctor(..) | DefKind::Fn | DefKind::AssocFn => {
let sig = tcx.liberate_late_bound_regions(
def_id.to_def_id(),
tcx.fn_sig(def_id).instantiate_identity(),
);
(sig.inputs().to_vec(), sig.output(), None)
}
DefKind::Closure => {
let closure_ty = tcx.type_of(def_id).instantiate_identity();
match closure_ty.kind() {
ty::Closure(_, args) => {
let args = args.as_closure();
let sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), args.sig());
let self_ty = match args.kind() {
ty::ClosureKind::Fn => {
Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, closure_ty)
}
ty::ClosureKind::FnMut => {
Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, closure_ty)
}
ty::ClosureKind::FnOnce => closure_ty,
};
(
[self_ty].into_iter().chain(sig.inputs()[0].tuple_fields()).collect(),
sig.output(),
None,
)
}
ty::Coroutine(_, args) => {
let args = args.as_coroutine();
let resume_ty = args.resume_ty();
let yield_ty = args.yield_ty();
let return_ty = args.return_ty();
(
vec![closure_ty, resume_ty],
return_ty,
Some(Box::new(CoroutineInfo::initial(
tcx.coroutine_kind(def_id).unwrap(),
yield_ty,
resume_ty,
))),
)
}
ty::CoroutineClosure(did, args) => {
let args = args.as_coroutine_closure();
let sig = tcx.liberate_late_bound_regions(
def_id.to_def_id(),
args.coroutine_closure_sig(),
);
let self_ty = match args.kind() {
ty::ClosureKind::Fn => {
Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, closure_ty)
}
ty::ClosureKind::FnMut => {
Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, closure_ty)
}
ty::ClosureKind::FnOnce => closure_ty,
};
(
[self_ty].into_iter().chain(sig.tupled_inputs_ty.tuple_fields()).collect(),
sig.to_coroutine(
tcx,
args.parent_args(),
args.kind_ty(),
tcx.coroutine_for_closure(*did),
Ty::new_error(tcx, guar),
),
None,
)
}
ty::Error(_) => (vec![closure_ty, closure_ty], closure_ty, None),
kind => {
span_bug!(
span,
"expected type of closure body to be a closure or coroutine, got {kind:?}"
);
}
}
}
dk => span_bug!(span, "{:?} is not a body: {:?}", def_id, dk),
};
let source_info = SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE };
let local_decls = IndexVec::from_iter(
[output].iter().chain(&inputs).map(|ty| LocalDecl::with_source_info(*ty, source_info)),
);
let mut cfg = CFG { basic_blocks: IndexVec::new() };
let mut source_scopes = IndexVec::new();
cfg.start_new_block();
source_scopes.push(SourceScopeData {
span,
parent_scope: None,
inlined: None,
inlined_parent_scope: None,
local_data: ClearCrossCrate::Set(SourceScopeLocalData { lint_root: hir_id }),
});
cfg.terminate(START_BLOCK, source_info, TerminatorKind::Unreachable);
Body::new(
MirSource::item(def_id.to_def_id()),
cfg.basic_blocks,
source_scopes,
local_decls,
IndexVec::new(),
inputs.len(),
vec![],
span,
coroutine,
Some(guar),
)
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn new(
thir: &'a Thir<'tcx>,
infcx: InferCtxt<'tcx>,
def: LocalDefId,
hir_id: HirId,
span: Span,
arg_count: usize,
return_ty: Ty<'tcx>,
return_span: Span,
coroutine: Option<Box<CoroutineInfo<'tcx>>>,
) -> Builder<'a, 'tcx> {
let tcx = infcx.tcx;
let attrs = tcx.hir().attrs(hir_id);
// Some functions always have overflow checks enabled,
// however, they may not get codegen'd, depending on
// the settings for the crate they are codegened in.
let mut check_overflow = attr::contains_name(attrs, sym::rustc_inherit_overflow_checks);
// Respect -C overflow-checks.
check_overflow |= tcx.sess.overflow_checks();
// Constants always need overflow checks.
check_overflow |= matches!(
tcx.hir().body_owner_kind(def),
hir::BodyOwnerKind::Const { .. } | hir::BodyOwnerKind::Static(_)
);
let lint_level = LintLevel::Explicit(hir_id);
let param_env = tcx.param_env(def);
let mut builder = Builder {
thir,
tcx,
infcx,
region_scope_tree: tcx.region_scope_tree(def),
param_env,
def_id: def,
hir_id,
parent_module: tcx.parent_module(hir_id).to_def_id(),
check_overflow,
cfg: CFG { basic_blocks: IndexVec::new() },
fn_span: span,
arg_count,
coroutine,
scopes: scope::Scopes::new(),
block_context: BlockContext::new(),
source_scopes: IndexVec::new(),
source_scope: OUTERMOST_SOURCE_SCOPE,
guard_context: vec![],
fixed_temps: Default::default(),
fixed_temps_scope: None,
local_decls: IndexVec::from_elem_n(LocalDecl::new(return_ty, return_span), 1),
canonical_user_type_annotations: IndexVec::new(),
upvars: CaptureMap::new(),
var_indices: Default::default(),
unit_temp: None,
var_debug_info: vec![],
lint_level_roots_cache: GrowableBitSet::new_empty(),
coverage_info: coverageinfo::CoverageInfoBuilder::new_if_enabled(tcx, def),
};
assert_eq!(builder.cfg.start_new_block(), START_BLOCK);
assert_eq!(builder.new_source_scope(span, lint_level), OUTERMOST_SOURCE_SCOPE);
builder.source_scopes[OUTERMOST_SOURCE_SCOPE].parent_scope = None;
builder
}
fn finish(self) -> Body<'tcx> {
let mut body = Body::new(
MirSource::item(self.def_id.to_def_id()),
self.cfg.basic_blocks,
self.source_scopes,
self.local_decls,
self.canonical_user_type_annotations,
self.arg_count,
self.var_debug_info,
self.fn_span,
self.coroutine,
None,
);
body.coverage_info_hi = self.coverage_info.map(|b| b.into_done());
for (index, block) in body.basic_blocks.iter().enumerate() {
if block.terminator.is_none() {
use rustc_middle::mir::pretty;
let options = pretty::PrettyPrintMirOptions::from_cli(self.tcx);
pretty::write_mir_fn(
self.tcx,
&body,
&mut |_, _| Ok(()),
&mut std::io::stdout(),
options,
)
.unwrap();
span_bug!(self.fn_span, "no terminator on block {:?}", index);
}
}
body
}
fn insert_upvar_arg(&mut self) {
let Some(closure_arg) = self.local_decls.get(ty::CAPTURE_STRUCT_LOCAL) else { return };
let mut closure_ty = closure_arg.ty;
let mut closure_env_projs = vec![];
if let ty::Ref(_, ty, _) = closure_ty.kind() {
closure_env_projs.push(ProjectionElem::Deref);
closure_ty = *ty;
}
let upvar_args = match closure_ty.kind() {
ty::Closure(_, args) => ty::UpvarArgs::Closure(args),
ty::Coroutine(_, args) => ty::UpvarArgs::Coroutine(args),
ty::CoroutineClosure(_, args) => ty::UpvarArgs::CoroutineClosure(args),
_ => return,
};
// In analyze_closure() in upvar.rs we gathered a list of upvars used by an
// indexed closure and we stored in a map called closure_min_captures in TypeckResults
// with the closure's DefId. Here, we run through that vec of UpvarIds for
// the given closure and use the necessary information to create upvar
// debuginfo and to fill `self.upvars`.
let capture_tys = upvar_args.upvar_tys();
let tcx = self.tcx;
self.upvars = tcx
.closure_captures(self.def_id)
.iter()
.zip_eq(capture_tys)
.enumerate()
.map(|(i, (captured_place, ty))| {
let name = captured_place.to_symbol();
let capture = captured_place.info.capture_kind;
let var_id = match captured_place.place.base {
HirPlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
_ => bug!("Expected an upvar"),
};
let mutability = captured_place.mutability;
let mut projs = closure_env_projs.clone();
projs.push(ProjectionElem::Field(FieldIdx::new(i), ty));
match capture {
ty::UpvarCapture::ByValue => {}
ty::UpvarCapture::ByRef(..) => {
projs.push(ProjectionElem::Deref);
}
};
let use_place = Place {
local: ty::CAPTURE_STRUCT_LOCAL,
projection: tcx.mk_place_elems(&projs),
};
self.var_debug_info.push(VarDebugInfo {
name,
source_info: SourceInfo::outermost(captured_place.var_ident.span),
value: VarDebugInfoContents::Place(use_place),
composite: None,
argument_index: None,
});
let capture = Capture { captured_place, use_place, mutability };
(var_id, capture)
})
.collect();
}
fn args_and_body(
&mut self,
mut block: BasicBlock,
arguments: &IndexSlice<ParamId, Param<'tcx>>,
argument_scope: region::Scope,
expr_id: ExprId,
) -> BlockAnd<()> {
let expr_span = self.thir[expr_id].span;
// Allocate locals for the function arguments
for (argument_index, param) in arguments.iter().enumerate() {
let source_info =
SourceInfo::outermost(param.pat.as_ref().map_or(self.fn_span, |pat| pat.span));
let arg_local =
self.local_decls.push(LocalDecl::with_source_info(param.ty, source_info));
// If this is a simple binding pattern, give debuginfo a nice name.
if let Some(ref pat) = param.pat
&& let Some(name) = pat.simple_ident()
{
self.var_debug_info.push(VarDebugInfo {
name,
source_info,
value: VarDebugInfoContents::Place(arg_local.into()),
composite: None,
argument_index: Some(argument_index as u16 + 1),
});
}
}
self.insert_upvar_arg();
let mut scope = None;
// Bind the argument patterns
for (index, param) in arguments.iter().enumerate() {
// Function arguments always get the first Local indices after the return place
let local = Local::new(index + 1);
let place = Place::from(local);
// Make sure we drop (parts of) the argument even when not matched on.
self.schedule_drop(
param.pat.as_ref().map_or(expr_span, |pat| pat.span),
argument_scope,
local,
DropKind::Value,
);
let Some(ref pat) = param.pat else {
continue;
};
let original_source_scope = self.source_scope;
let span = pat.span;
if let Some(arg_hir_id) = param.hir_id {
self.set_correct_source_scope_for_arg(arg_hir_id, original_source_scope, span);
}
match pat.kind {
// Don't introduce extra copies for simple bindings
PatKind::Binding {
var,
mode: BindingMode(ByRef::No, mutability),
subpattern: None,
..
} => {
self.local_decls[local].mutability = mutability;
self.local_decls[local].source_info.scope = self.source_scope;
**self.local_decls[local].local_info.as_mut().assert_crate_local() =
if let Some(kind) = param.self_kind {
LocalInfo::User(BindingForm::ImplicitSelf(kind))
} else {
let binding_mode = BindingMode(ByRef::No, mutability);
LocalInfo::User(BindingForm::Var(VarBindingForm {
binding_mode,
opt_ty_info: param.ty_span,
opt_match_place: Some((None, span)),
pat_span: span,
}))
};
self.var_indices.insert(var, LocalsForNode::One(local));
}
_ => {
scope = self.declare_bindings(
scope,
expr_span,
&pat,
None,
Some((Some(&place), span)),
);
let place_builder = PlaceBuilder::from(local);
block = self.place_into_pattern(block, pat, place_builder, false).into_block();
}
}
self.source_scope = original_source_scope;
}
// Enter the argument pattern bindings source scope, if it exists.
if let Some(source_scope) = scope {
self.source_scope = source_scope;
}
if self.tcx.intrinsic(self.def_id).is_some_and(|i| i.must_be_overridden) {
let source_info = self.source_info(rustc_span::DUMMY_SP);
self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
self.cfg.start_new_block().unit()
} else {
self.expr_into_dest(Place::return_place(), block, expr_id)
}
}
fn set_correct_source_scope_for_arg(
&mut self,
arg_hir_id: HirId,
original_source_scope: SourceScope,
pattern_span: Span,
) {
let parent_id = self.source_scopes[original_source_scope]
.local_data
.as_ref()
.assert_crate_local()
.lint_root;
self.maybe_new_source_scope(pattern_span, arg_hir_id, parent_id);
}
fn get_unit_temp(&mut self) -> Place<'tcx> {
match self.unit_temp {
Some(tmp) => tmp,
None => {
let ty = self.tcx.types.unit;
let fn_span = self.fn_span;
let tmp = self.temp(ty, fn_span);
self.unit_temp = Some(tmp);
tmp
}
}
}
}
fn parse_float_into_constval<'tcx>(
num: Symbol,
float_ty: ty::FloatTy,
neg: bool,
) -> Option<ConstValue<'tcx>> {
parse_float_into_scalar(num, float_ty, neg).map(|s| ConstValue::Scalar(s.into()))
}
pub(crate) fn parse_float_into_scalar(
num: Symbol,
float_ty: ty::FloatTy,
neg: bool,
) -> Option<ScalarInt> {
let num = num.as_str();
match float_ty {
// FIXME(f16_f128): When available, compare to the library parser as with `f32` and `f64`
ty::FloatTy::F16 => {
let mut f = num.parse::<Half>().ok()?;
if neg {
f = -f;
}
Some(ScalarInt::from(f))
}
ty::FloatTy::F32 => {
let Ok(rust_f) = num.parse::<f32>() else { return None };
let mut f = num
.parse::<Single>()
.unwrap_or_else(|e| panic!("apfloat::ieee::Single failed to parse `{num}`: {e:?}"));
assert!(
u128::from(rust_f.to_bits()) == f.to_bits(),
"apfloat::ieee::Single gave different result for `{}`: \
{}({:#x}) vs Rust's {}({:#x})",
rust_f,
f,
f.to_bits(),
Single::from_bits(rust_f.to_bits().into()),
rust_f.to_bits()
);
if neg {
f = -f;
}
Some(ScalarInt::from(f))
}
ty::FloatTy::F64 => {
let Ok(rust_f) = num.parse::<f64>() else { return None };
let mut f = num
.parse::<Double>()
.unwrap_or_else(|e| panic!("apfloat::ieee::Double failed to parse `{num}`: {e:?}"));
assert!(
u128::from(rust_f.to_bits()) == f.to_bits(),
"apfloat::ieee::Double gave different result for `{}`: \
{}({:#x}) vs Rust's {}({:#x})",
rust_f,
f,
f.to_bits(),
Double::from_bits(rust_f.to_bits().into()),
rust_f.to_bits()
);
if neg {
f = -f;
}
Some(ScalarInt::from(f))
}
// FIXME(f16_f128): When available, compare to the library parser as with `f32` and `f64`
ty::FloatTy::F128 => {
let mut f = num.parse::<Quad>().ok()?;
if neg {
f = -f;
}
Some(ScalarInt::from(f))
}
}
}
///////////////////////////////////////////////////////////////////////////
// Builder methods are broken up into modules, depending on what kind
// of thing is being lowered. Note that they use the `unpack` macro
// above extensively.
mod block;
mod cfg;
mod coverageinfo;
mod custom;
mod expr;
mod matches;
mod misc;
mod scope;
pub(crate) use expr::category::Category as ExprCategory;