rustc_mir_build/build/expr/
as_rvalue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
//! See docs in `build/expr/mod.rs`.

use rustc_abi::{BackendRepr, FieldIdx, Primitive};
use rustc_hir::lang_items::LangItem;
use rustc_index::{Idx, IndexVec};
use rustc_middle::bug;
use rustc_middle::middle::region;
use rustc_middle::mir::interpret::Scalar;
use rustc_middle::mir::*;
use rustc_middle::thir::*;
use rustc_middle::ty::cast::{CastTy, mir_cast_kind};
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::util::IntTypeExt;
use rustc_middle::ty::{self, Ty, UpvarArgs};
use rustc_span::source_map::Spanned;
use rustc_span::{DUMMY_SP, Span};
use tracing::debug;

use crate::build::expr::as_place::PlaceBase;
use crate::build::expr::category::{Category, RvalueFunc};
use crate::build::{BlockAnd, BlockAndExtension, Builder, NeedsTemporary};

impl<'a, 'tcx> Builder<'a, 'tcx> {
    /// Returns an rvalue suitable for use until the end of the current
    /// scope expression.
    ///
    /// The operand returned from this function will *not be valid* after
    /// an ExprKind::Scope is passed, so please do *not* return it from
    /// functions to avoid bad miscompiles.
    pub(crate) fn as_local_rvalue(
        &mut self,
        block: BasicBlock,
        expr_id: ExprId,
    ) -> BlockAnd<Rvalue<'tcx>> {
        let local_scope = self.local_scope();
        self.as_rvalue(
            block,
            TempLifetime { temp_lifetime: Some(local_scope), backwards_incompatible: None },
            expr_id,
        )
    }

    /// Compile `expr`, yielding an rvalue.
    pub(crate) fn as_rvalue(
        &mut self,
        mut block: BasicBlock,
        scope: TempLifetime,
        expr_id: ExprId,
    ) -> BlockAnd<Rvalue<'tcx>> {
        let this = self;
        let expr = &this.thir[expr_id];
        debug!("expr_as_rvalue(block={:?}, scope={:?}, expr={:?})", block, scope, expr);

        let expr_span = expr.span;
        let source_info = this.source_info(expr_span);

        match expr.kind {
            ExprKind::ThreadLocalRef(did) => block.and(Rvalue::ThreadLocalRef(did)),
            ExprKind::Scope { region_scope, lint_level, value } => {
                let region_scope = (region_scope, source_info);
                this.in_scope(region_scope, lint_level, |this| this.as_rvalue(block, scope, value))
            }
            ExprKind::Repeat { value, count } => {
                if Some(0) == count.try_to_target_usize(this.tcx) {
                    this.build_zero_repeat(block, value, scope, source_info)
                } else {
                    let value_operand = unpack!(
                        block = this.as_operand(
                            block,
                            scope,
                            value,
                            LocalInfo::Boring,
                            NeedsTemporary::No
                        )
                    );
                    block.and(Rvalue::Repeat(value_operand, count))
                }
            }
            ExprKind::Binary { op, lhs, rhs } => {
                let lhs = unpack!(
                    block = this.as_operand(
                        block,
                        scope,
                        lhs,
                        LocalInfo::Boring,
                        NeedsTemporary::Maybe
                    )
                );
                let rhs = unpack!(
                    block =
                        this.as_operand(block, scope, rhs, LocalInfo::Boring, NeedsTemporary::No)
                );
                this.build_binary_op(block, op, expr_span, expr.ty, lhs, rhs)
            }
            ExprKind::Unary { op, arg } => {
                let arg = unpack!(
                    block =
                        this.as_operand(block, scope, arg, LocalInfo::Boring, NeedsTemporary::No)
                );
                // Check for -MIN on signed integers
                if this.check_overflow && op == UnOp::Neg && expr.ty.is_signed() {
                    let bool_ty = this.tcx.types.bool;

                    let minval = this.minval_literal(expr_span, expr.ty);
                    let is_min = this.temp(bool_ty, expr_span);

                    this.cfg.push_assign(
                        block,
                        source_info,
                        is_min,
                        Rvalue::BinaryOp(BinOp::Eq, Box::new((arg.to_copy(), minval))),
                    );

                    block = this.assert(
                        block,
                        Operand::Move(is_min),
                        false,
                        AssertKind::OverflowNeg(arg.to_copy()),
                        expr_span,
                    );
                }
                block.and(Rvalue::UnaryOp(op, arg))
            }
            ExprKind::Box { value } => {
                let value_ty = this.thir[value].ty;
                let tcx = this.tcx;
                let source_info = this.source_info(expr_span);

                let size = this.temp(tcx.types.usize, expr_span);
                this.cfg.push_assign(
                    block,
                    source_info,
                    size,
                    Rvalue::NullaryOp(NullOp::SizeOf, value_ty),
                );

                let align = this.temp(tcx.types.usize, expr_span);
                this.cfg.push_assign(
                    block,
                    source_info,
                    align,
                    Rvalue::NullaryOp(NullOp::AlignOf, value_ty),
                );

                // malloc some memory of suitable size and align:
                let exchange_malloc = Operand::function_handle(
                    tcx,
                    tcx.require_lang_item(LangItem::ExchangeMalloc, Some(expr_span)),
                    [],
                    expr_span,
                );
                let storage = this.temp(Ty::new_mut_ptr(tcx, tcx.types.u8), expr_span);
                let success = this.cfg.start_new_block();
                this.cfg.terminate(block, source_info, TerminatorKind::Call {
                    func: exchange_malloc,
                    args: [Spanned { node: Operand::Move(size), span: DUMMY_SP }, Spanned {
                        node: Operand::Move(align),
                        span: DUMMY_SP,
                    }]
                    .into(),
                    destination: storage,
                    target: Some(success),
                    unwind: UnwindAction::Continue,
                    call_source: CallSource::Misc,
                    fn_span: expr_span,
                });
                this.diverge_from(block);
                block = success;

                // The `Box<T>` temporary created here is not a part of the HIR,
                // and therefore is not considered during coroutine auto-trait
                // determination. See the comment about `box` at `yield_in_scope`.
                let result = this.local_decls.push(LocalDecl::new(expr.ty, expr_span));
                this.cfg.push(block, Statement {
                    source_info,
                    kind: StatementKind::StorageLive(result),
                });
                if let Some(scope) = scope.temp_lifetime {
                    // schedule a shallow free of that memory, lest we unwind:
                    this.schedule_drop_storage_and_value(expr_span, scope, result);
                }

                // Transmute `*mut u8` to the box (thus far, uninitialized):
                let box_ = Rvalue::ShallowInitBox(Operand::Move(storage), value_ty);
                this.cfg.push_assign(block, source_info, Place::from(result), box_);

                // initialize the box contents:
                block = this
                    .expr_into_dest(this.tcx.mk_place_deref(Place::from(result)), block, value)
                    .into_block();
                block.and(Rvalue::Use(Operand::Move(Place::from(result))))
            }
            ExprKind::Cast { source } => {
                let source_expr = &this.thir[source];

                // Casting an enum to an integer is equivalent to computing the discriminant and casting the
                // discriminant. Previously every backend had to repeat the logic for this operation. Now we
                // create all the steps directly in MIR with operations all backends need to support anyway.
                let (source, ty) = if let ty::Adt(adt_def, ..) = source_expr.ty.kind()
                    && adt_def.is_enum()
                {
                    let discr_ty = adt_def.repr().discr_type().to_ty(this.tcx);
                    let temp = unpack!(block = this.as_temp(block, scope, source, Mutability::Not));
                    let layout =
                        this.tcx.layout_of(this.typing_env().as_query_input(source_expr.ty));
                    let discr = this.temp(discr_ty, source_expr.span);
                    this.cfg.push_assign(
                        block,
                        source_info,
                        discr,
                        Rvalue::Discriminant(temp.into()),
                    );
                    let (op, ty) = (Operand::Move(discr), discr_ty);

                    if let BackendRepr::Scalar(scalar) = layout.unwrap().backend_repr
                        && !scalar.is_always_valid(&this.tcx)
                        && let Primitive::Int(int_width, _signed) = scalar.primitive()
                    {
                        let unsigned_ty = int_width.to_ty(this.tcx, false);
                        let unsigned_place = this.temp(unsigned_ty, expr_span);
                        this.cfg.push_assign(
                            block,
                            source_info,
                            unsigned_place,
                            Rvalue::Cast(CastKind::IntToInt, Operand::Copy(discr), unsigned_ty),
                        );

                        let bool_ty = this.tcx.types.bool;
                        let range = scalar.valid_range(&this.tcx);
                        let merge_op =
                            if range.start <= range.end { BinOp::BitAnd } else { BinOp::BitOr };

                        let mut comparer = |range: u128, bin_op: BinOp| -> Place<'tcx> {
                            // We can use `ty::TypingEnv::fully_monomorphized()`` here
                            // as we only need it to compute the layout of a primitive.
                            let range_val = Const::from_bits(
                                this.tcx,
                                range,
                                ty::TypingEnv::fully_monomorphized(),
                                unsigned_ty,
                            );
                            let lit_op = this.literal_operand(expr.span, range_val);
                            let is_bin_op = this.temp(bool_ty, expr_span);
                            this.cfg.push_assign(
                                block,
                                source_info,
                                is_bin_op,
                                Rvalue::BinaryOp(
                                    bin_op,
                                    Box::new((Operand::Copy(unsigned_place), lit_op)),
                                ),
                            );
                            is_bin_op
                        };
                        let assert_place = if range.start == 0 {
                            comparer(range.end, BinOp::Le)
                        } else {
                            let start_place = comparer(range.start, BinOp::Ge);
                            let end_place = comparer(range.end, BinOp::Le);
                            let merge_place = this.temp(bool_ty, expr_span);
                            this.cfg.push_assign(
                                block,
                                source_info,
                                merge_place,
                                Rvalue::BinaryOp(
                                    merge_op,
                                    Box::new((
                                        Operand::Move(start_place),
                                        Operand::Move(end_place),
                                    )),
                                ),
                            );
                            merge_place
                        };
                        this.cfg.push(block, Statement {
                            source_info,
                            kind: StatementKind::Intrinsic(Box::new(
                                NonDivergingIntrinsic::Assume(Operand::Move(assert_place)),
                            )),
                        });
                    }

                    (op, ty)
                } else {
                    let ty = source_expr.ty;
                    let source = unpack!(
                        block = this.as_operand(
                            block,
                            scope,
                            source,
                            LocalInfo::Boring,
                            NeedsTemporary::No
                        )
                    );
                    (source, ty)
                };
                let from_ty = CastTy::from_ty(ty);
                let cast_ty = CastTy::from_ty(expr.ty);
                debug!("ExprKind::Cast from_ty={from_ty:?}, cast_ty={:?}/{cast_ty:?}", expr.ty);
                let cast_kind = mir_cast_kind(ty, expr.ty);
                block.and(Rvalue::Cast(cast_kind, source, expr.ty))
            }
            ExprKind::PointerCoercion { cast, source, is_from_as_cast } => {
                let source = unpack!(
                    block = this.as_operand(
                        block,
                        scope,
                        source,
                        LocalInfo::Boring,
                        NeedsTemporary::No
                    )
                );
                let origin =
                    if is_from_as_cast { CoercionSource::AsCast } else { CoercionSource::Implicit };
                block.and(Rvalue::Cast(CastKind::PointerCoercion(cast, origin), source, expr.ty))
            }
            ExprKind::Array { ref fields } => {
                // (*) We would (maybe) be closer to codegen if we
                // handled this and other aggregate cases via
                // `into()`, not `as_rvalue` -- in that case, instead
                // of generating
                //
                //     let tmp1 = ...1;
                //     let tmp2 = ...2;
                //     dest = Rvalue::Aggregate(Foo, [tmp1, tmp2])
                //
                // we could just generate
                //
                //     dest.f = ...1;
                //     dest.g = ...2;
                //
                // The problem is that then we would need to:
                //
                // (a) have a more complex mechanism for handling
                //     partial cleanup;
                // (b) distinguish the case where the type `Foo` has a
                //     destructor, in which case creating an instance
                //     as a whole "arms" the destructor, and you can't
                //     write individual fields; and,
                // (c) handle the case where the type Foo has no
                //     fields. We don't want `let x: ();` to compile
                //     to the same MIR as `let x = ();`.

                // first process the set of fields
                let el_ty = expr.ty.sequence_element_type(this.tcx);
                let fields: IndexVec<FieldIdx, _> = fields
                    .into_iter()
                    .copied()
                    .map(|f| {
                        unpack!(
                            block = this.as_operand(
                                block,
                                scope,
                                f,
                                LocalInfo::Boring,
                                NeedsTemporary::Maybe
                            )
                        )
                    })
                    .collect();

                block.and(Rvalue::Aggregate(Box::new(AggregateKind::Array(el_ty)), fields))
            }
            ExprKind::Tuple { ref fields } => {
                // see (*) above
                // first process the set of fields
                let fields: IndexVec<FieldIdx, _> = fields
                    .into_iter()
                    .copied()
                    .map(|f| {
                        unpack!(
                            block = this.as_operand(
                                block,
                                scope,
                                f,
                                LocalInfo::Boring,
                                NeedsTemporary::Maybe
                            )
                        )
                    })
                    .collect();

                block.and(Rvalue::Aggregate(Box::new(AggregateKind::Tuple), fields))
            }
            ExprKind::Closure(box ClosureExpr {
                closure_id,
                args,
                ref upvars,
                ref fake_reads,
                movability: _,
            }) => {
                // Convert the closure fake reads, if any, from `ExprRef` to mir `Place`
                // and push the fake reads.
                // This must come before creating the operands. This is required in case
                // there is a fake read and a borrow of the same path, since otherwise the
                // fake read might interfere with the borrow. Consider an example like this
                // one:
                // ```
                // let mut x = 0;
                // let c = || {
                //     &mut x; // mutable borrow of `x`
                //     match x { _ => () } // fake read of `x`
                // };
                // ```
                //
                for (thir_place, cause, hir_id) in fake_reads.into_iter() {
                    let place_builder = unpack!(block = this.as_place_builder(block, *thir_place));

                    if let Some(mir_place) = place_builder.try_to_place(this) {
                        this.cfg.push_fake_read(
                            block,
                            this.source_info(this.tcx.hir().span(*hir_id)),
                            *cause,
                            mir_place,
                        );
                    }
                }

                // see (*) above
                let operands: IndexVec<FieldIdx, _> = upvars
                    .into_iter()
                    .copied()
                    .map(|upvar| {
                        let upvar_expr = &this.thir[upvar];
                        match Category::of(&upvar_expr.kind) {
                            // Use as_place to avoid creating a temporary when
                            // moving a variable into a closure, so that
                            // borrowck knows which variables to mark as being
                            // used as mut. This is OK here because the upvar
                            // expressions have no side effects and act on
                            // disjoint places.
                            // This occurs when capturing by copy/move, while
                            // by reference captures use as_operand
                            Some(Category::Place) => {
                                let place = unpack!(block = this.as_place(block, upvar));
                                this.consume_by_copy_or_move(place)
                            }
                            _ => {
                                // Turn mutable borrow captures into unique
                                // borrow captures when capturing an immutable
                                // variable. This is sound because the mutation
                                // that caused the capture will cause an error.
                                match upvar_expr.kind {
                                    ExprKind::Borrow {
                                        borrow_kind:
                                            BorrowKind::Mut { kind: MutBorrowKind::Default },
                                        arg,
                                    } => unpack!(
                                        block = this.limit_capture_mutability(
                                            upvar_expr.span,
                                            upvar_expr.ty,
                                            scope.temp_lifetime,
                                            block,
                                            arg,
                                        )
                                    ),
                                    _ => {
                                        unpack!(
                                            block = this.as_operand(
                                                block,
                                                scope,
                                                upvar,
                                                LocalInfo::Boring,
                                                NeedsTemporary::Maybe
                                            )
                                        )
                                    }
                                }
                            }
                        }
                    })
                    .collect();

                let result = match args {
                    UpvarArgs::Coroutine(args) => {
                        Box::new(AggregateKind::Coroutine(closure_id.to_def_id(), args))
                    }
                    UpvarArgs::Closure(args) => {
                        Box::new(AggregateKind::Closure(closure_id.to_def_id(), args))
                    }
                    UpvarArgs::CoroutineClosure(args) => {
                        Box::new(AggregateKind::CoroutineClosure(closure_id.to_def_id(), args))
                    }
                };
                block.and(Rvalue::Aggregate(result, operands))
            }
            ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => {
                block = this.stmt_expr(block, expr_id, None).into_block();
                block.and(Rvalue::Use(Operand::Constant(Box::new(ConstOperand {
                    span: expr_span,
                    user_ty: None,
                    const_: Const::zero_sized(this.tcx.types.unit),
                }))))
            }

            ExprKind::OffsetOf { container, fields } => {
                block.and(Rvalue::NullaryOp(NullOp::OffsetOf(fields), container))
            }

            ExprKind::Literal { .. }
            | ExprKind::NamedConst { .. }
            | ExprKind::NonHirLiteral { .. }
            | ExprKind::ZstLiteral { .. }
            | ExprKind::ConstParam { .. }
            | ExprKind::ConstBlock { .. }
            | ExprKind::StaticRef { .. } => {
                let constant = this.as_constant(expr);
                block.and(Rvalue::Use(Operand::Constant(Box::new(constant))))
            }

            ExprKind::Yield { .. }
            | ExprKind::Block { .. }
            | ExprKind::Match { .. }
            | ExprKind::If { .. }
            | ExprKind::NeverToAny { .. }
            | ExprKind::Use { .. }
            | ExprKind::Borrow { .. }
            | ExprKind::RawBorrow { .. }
            | ExprKind::Adt { .. }
            | ExprKind::Loop { .. }
            | ExprKind::LogicalOp { .. }
            | ExprKind::Call { .. }
            | ExprKind::Field { .. }
            | ExprKind::Let { .. }
            | ExprKind::Deref { .. }
            | ExprKind::Index { .. }
            | ExprKind::VarRef { .. }
            | ExprKind::UpvarRef { .. }
            | ExprKind::Break { .. }
            | ExprKind::Continue { .. }
            | ExprKind::Return { .. }
            | ExprKind::Become { .. }
            | ExprKind::InlineAsm { .. }
            | ExprKind::PlaceTypeAscription { .. }
            | ExprKind::ValueTypeAscription { .. } => {
                // these do not have corresponding `Rvalue` variants,
                // so make an operand and then return that
                debug_assert!(!matches!(
                    Category::of(&expr.kind),
                    Some(Category::Rvalue(RvalueFunc::AsRvalue) | Category::Constant)
                ));
                let operand = unpack!(
                    block = this.as_operand(
                        block,
                        scope,
                        expr_id,
                        LocalInfo::Boring,
                        NeedsTemporary::No,
                    )
                );
                block.and(Rvalue::Use(operand))
            }
        }
    }

    pub(crate) fn build_binary_op(
        &mut self,
        mut block: BasicBlock,
        op: BinOp,
        span: Span,
        ty: Ty<'tcx>,
        lhs: Operand<'tcx>,
        rhs: Operand<'tcx>,
    ) -> BlockAnd<Rvalue<'tcx>> {
        let source_info = self.source_info(span);
        let bool_ty = self.tcx.types.bool;
        let rvalue = match op {
            BinOp::Add | BinOp::Sub | BinOp::Mul if self.check_overflow && ty.is_integral() => {
                let result_tup = Ty::new_tup(self.tcx, &[ty, bool_ty]);
                let result_value = self.temp(result_tup, span);

                let op_with_overflow = op.wrapping_to_overflowing().unwrap();

                self.cfg.push_assign(
                    block,
                    source_info,
                    result_value,
                    Rvalue::BinaryOp(op_with_overflow, Box::new((lhs.to_copy(), rhs.to_copy()))),
                );
                let val_fld = FieldIdx::ZERO;
                let of_fld = FieldIdx::new(1);

                let tcx = self.tcx;
                let val = tcx.mk_place_field(result_value, val_fld, ty);
                let of = tcx.mk_place_field(result_value, of_fld, bool_ty);

                let err = AssertKind::Overflow(op, lhs, rhs);
                block = self.assert(block, Operand::Move(of), false, err, span);

                Rvalue::Use(Operand::Move(val))
            }
            BinOp::Shl | BinOp::Shr if self.check_overflow && ty.is_integral() => {
                // For an unsigned RHS, the shift is in-range for `rhs < bits`.
                // For a signed RHS, `IntToInt` cast to the equivalent unsigned
                // type and do that same comparison.
                // A negative value will be *at least* 128 after the cast (that's i8::MIN),
                // and 128 is an overflowing shift amount for all our currently existing types,
                // so this cast can never make us miss an overflow.
                let (lhs_size, _) = ty.int_size_and_signed(self.tcx);
                assert!(lhs_size.bits() <= 128);
                let rhs_ty = rhs.ty(&self.local_decls, self.tcx);
                let (rhs_size, _) = rhs_ty.int_size_and_signed(self.tcx);

                let (unsigned_rhs, unsigned_ty) = match rhs_ty.kind() {
                    ty::Uint(_) => (rhs.to_copy(), rhs_ty),
                    ty::Int(int_width) => {
                        let uint_ty = Ty::new_uint(self.tcx, int_width.to_unsigned());
                        let rhs_temp = self.temp(uint_ty, span);
                        self.cfg.push_assign(
                            block,
                            source_info,
                            rhs_temp,
                            Rvalue::Cast(CastKind::IntToInt, rhs.to_copy(), uint_ty),
                        );
                        (Operand::Move(rhs_temp), uint_ty)
                    }
                    _ => unreachable!("only integers are shiftable"),
                };

                // This can't overflow because the largest shiftable types are 128-bit,
                // which fits in `u8`, the smallest possible `unsigned_ty`.
                let lhs_bits = Operand::const_from_scalar(
                    self.tcx,
                    unsigned_ty,
                    Scalar::from_uint(lhs_size.bits(), rhs_size),
                    span,
                );

                let inbounds = self.temp(bool_ty, span);
                self.cfg.push_assign(
                    block,
                    source_info,
                    inbounds,
                    Rvalue::BinaryOp(BinOp::Lt, Box::new((unsigned_rhs, lhs_bits))),
                );

                let overflow_err = AssertKind::Overflow(op, lhs.to_copy(), rhs.to_copy());
                block = self.assert(block, Operand::Move(inbounds), true, overflow_err, span);
                Rvalue::BinaryOp(op, Box::new((lhs, rhs)))
            }
            BinOp::Div | BinOp::Rem if ty.is_integral() => {
                // Checking division and remainder is more complex, since we 1. always check
                // and 2. there are two possible failure cases, divide-by-zero and overflow.

                let zero_err = if op == BinOp::Div {
                    AssertKind::DivisionByZero(lhs.to_copy())
                } else {
                    AssertKind::RemainderByZero(lhs.to_copy())
                };
                let overflow_err = AssertKind::Overflow(op, lhs.to_copy(), rhs.to_copy());

                // Check for / 0
                let is_zero = self.temp(bool_ty, span);
                let zero = self.zero_literal(span, ty);
                self.cfg.push_assign(
                    block,
                    source_info,
                    is_zero,
                    Rvalue::BinaryOp(BinOp::Eq, Box::new((rhs.to_copy(), zero))),
                );

                block = self.assert(block, Operand::Move(is_zero), false, zero_err, span);

                // We only need to check for the overflow in one case:
                // MIN / -1, and only for signed values.
                if ty.is_signed() {
                    let neg_1 = self.neg_1_literal(span, ty);
                    let min = self.minval_literal(span, ty);

                    let is_neg_1 = self.temp(bool_ty, span);
                    let is_min = self.temp(bool_ty, span);
                    let of = self.temp(bool_ty, span);

                    // this does (rhs == -1) & (lhs == MIN). It could short-circuit instead

                    self.cfg.push_assign(
                        block,
                        source_info,
                        is_neg_1,
                        Rvalue::BinaryOp(BinOp::Eq, Box::new((rhs.to_copy(), neg_1))),
                    );
                    self.cfg.push_assign(
                        block,
                        source_info,
                        is_min,
                        Rvalue::BinaryOp(BinOp::Eq, Box::new((lhs.to_copy(), min))),
                    );

                    let is_neg_1 = Operand::Move(is_neg_1);
                    let is_min = Operand::Move(is_min);
                    self.cfg.push_assign(
                        block,
                        source_info,
                        of,
                        Rvalue::BinaryOp(BinOp::BitAnd, Box::new((is_neg_1, is_min))),
                    );

                    block = self.assert(block, Operand::Move(of), false, overflow_err, span);
                }

                Rvalue::BinaryOp(op, Box::new((lhs, rhs)))
            }
            _ => Rvalue::BinaryOp(op, Box::new((lhs, rhs))),
        };
        block.and(rvalue)
    }

    fn build_zero_repeat(
        &mut self,
        mut block: BasicBlock,
        value: ExprId,
        scope: TempLifetime,
        outer_source_info: SourceInfo,
    ) -> BlockAnd<Rvalue<'tcx>> {
        let this = self;
        let value_expr = &this.thir[value];
        let elem_ty = value_expr.ty;
        if let Some(Category::Constant) = Category::of(&value_expr.kind) {
            // Repeating a const does nothing
        } else {
            // For a non-const, we may need to generate an appropriate `Drop`
            let value_operand = unpack!(
                block = this.as_operand(block, scope, value, LocalInfo::Boring, NeedsTemporary::No)
            );
            if let Operand::Move(to_drop) = value_operand {
                let success = this.cfg.start_new_block();
                this.cfg.terminate(block, outer_source_info, TerminatorKind::Drop {
                    place: to_drop,
                    target: success,
                    unwind: UnwindAction::Continue,
                    replace: false,
                });
                this.diverge_from(block);
                block = success;
            }
            this.record_operands_moved(&[Spanned { node: value_operand, span: DUMMY_SP }]);
        }
        block.and(Rvalue::Aggregate(Box::new(AggregateKind::Array(elem_ty)), IndexVec::new()))
    }

    fn limit_capture_mutability(
        &mut self,
        upvar_span: Span,
        upvar_ty: Ty<'tcx>,
        temp_lifetime: Option<region::Scope>,
        mut block: BasicBlock,
        arg: ExprId,
    ) -> BlockAnd<Operand<'tcx>> {
        let this = self;

        let source_info = this.source_info(upvar_span);
        let temp = this.local_decls.push(LocalDecl::new(upvar_ty, upvar_span));

        this.cfg.push(block, Statement { source_info, kind: StatementKind::StorageLive(temp) });

        let arg_place_builder = unpack!(block = this.as_place_builder(block, arg));

        let mutability = match arg_place_builder.base() {
            // We are capturing a path that starts off a local variable in the parent.
            // The mutability of the current capture is same as the mutability
            // of the local declaration in the parent.
            PlaceBase::Local(local) => this.local_decls[local].mutability,
            // Parent is a closure and we are capturing a path that is captured
            // by the parent itself. The mutability of the current capture
            // is same as that of the capture in the parent closure.
            PlaceBase::Upvar { .. } => {
                let enclosing_upvars_resolved = arg_place_builder.to_place(this);

                match enclosing_upvars_resolved.as_ref() {
                    PlaceRef {
                        local,
                        projection: &[ProjectionElem::Field(upvar_index, _), ..],
                    }
                    | PlaceRef {
                        local,
                        projection:
                            &[ProjectionElem::Deref, ProjectionElem::Field(upvar_index, _), ..],
                    } => {
                        // Not in a closure
                        debug_assert!(
                            local == ty::CAPTURE_STRUCT_LOCAL,
                            "Expected local to be Local(1), found {local:?}"
                        );
                        // Not in a closure
                        debug_assert!(
                            this.upvars.len() > upvar_index.index(),
                            "Unexpected capture place, upvars={:#?}, upvar_index={:?}",
                            this.upvars,
                            upvar_index
                        );
                        this.upvars[upvar_index.index()].mutability
                    }
                    _ => bug!("Unexpected capture place"),
                }
            }
        };

        let borrow_kind = match mutability {
            Mutability::Not => BorrowKind::Mut { kind: MutBorrowKind::ClosureCapture },
            Mutability::Mut => BorrowKind::Mut { kind: MutBorrowKind::Default },
        };

        let arg_place = arg_place_builder.to_place(this);

        this.cfg.push_assign(
            block,
            source_info,
            Place::from(temp),
            Rvalue::Ref(this.tcx.lifetimes.re_erased, borrow_kind, arg_place),
        );

        // See the comment in `expr_as_temp` and on the `rvalue_scopes` field for why
        // this can be `None`.
        if let Some(temp_lifetime) = temp_lifetime {
            this.schedule_drop_storage_and_value(upvar_span, temp_lifetime, temp);
        }

        block.and(Operand::Move(Place::from(temp)))
    }

    // Helper to get a `-1` value of the appropriate type
    fn neg_1_literal(&mut self, span: Span, ty: Ty<'tcx>) -> Operand<'tcx> {
        let typing_env = ty::TypingEnv::fully_monomorphized();
        let size = self.tcx.layout_of(typing_env.as_query_input(ty)).unwrap().size;
        let literal = Const::from_bits(self.tcx, size.unsigned_int_max(), typing_env, ty);

        self.literal_operand(span, literal)
    }

    // Helper to get the minimum value of the appropriate type
    fn minval_literal(&mut self, span: Span, ty: Ty<'tcx>) -> Operand<'tcx> {
        assert!(ty.is_signed());
        let typing_env = ty::TypingEnv::fully_monomorphized();
        let bits = self.tcx.layout_of(typing_env.as_query_input(ty)).unwrap().size.bits();
        let n = 1 << (bits - 1);
        let literal = Const::from_bits(self.tcx, n, typing_env, ty);

        self.literal_operand(span, literal)
    }
}