1. 1. Introduction
  2. 2. Getting Started
  3. 3. Tutorial: Guessing Game
  4. 4. Syntax and Semantics
    1. 4.1. Variable Bindings
    2. 4.2. Functions
    3. 4.3. Primitive Types
    4. 4.4. Comments
    5. 4.5. if
    6. 4.6. Loops
    7. 4.7. Vectors
    8. 4.8. Ownership
    9. 4.9. References and Borrowing
    10. 4.10. Lifetimes
    11. 4.11. Mutability
    12. 4.12. Structs
    13. 4.13. Enums
    14. 4.14. Match
    15. 4.15. Patterns
    16. 4.16. Method Syntax
    17. 4.17. Strings
    18. 4.18. Generics
    19. 4.19. Traits
    20. 4.20. Drop
    21. 4.21. if let
    22. 4.22. Trait Objects
    23. 4.23. Closures
    24. 4.24. Universal Function Call Syntax
    25. 4.25. Crates and Modules
    26. 4.26. `const` and `static`
    27. 4.27. Attributes
    28. 4.28. `type` aliases
    29. 4.29. Casting between types
    30. 4.30. Associated Types
    31. 4.31. Unsized Types
    32. 4.32. Operators and Overloading
    33. 4.33. Deref coercions
    34. 4.34. Macros
    35. 4.35. Raw Pointers
    36. 4.36. `unsafe`
  5. 5. Effective Rust
    1. 5.1. The Stack and the Heap
    2. 5.2. Testing
    3. 5.3. Conditional Compilation
    4. 5.4. Documentation
    5. 5.5. Iterators
    6. 5.6. Concurrency
    7. 5.7. Error Handling
    8. 5.8. Choosing your Guarantees
    9. 5.9. FFI
    10. 5.10. Borrow and AsRef
    11. 5.11. Release Channels
    12. 5.12. Using Rust without the standard library
  6. 6. Nightly Rust
    1. 6.1. Compiler Plugins
    2. 6.2. Inline Assembly
    3. 6.3. No stdlib
    4. 6.4. Intrinsics
    5. 6.5. Lang items
    6. 6.6. Advanced linking
    7. 6.7. Benchmark Tests
    8. 6.8. Box Syntax and Patterns
    9. 6.9. Slice Patterns
    10. 6.10. Associated Constants
    11. 6.11. Custom Allocators
  7. 7. Glossary
  8. 8. Syntax Index
  9. 9. Bibliography

Universal Function Call Syntax

Sometimes, functions can have the same names. Consider this code:

trait Foo {
    fn f(&self);
}

trait Bar {
    fn f(&self);
}

struct Baz;

impl Foo for Baz {
    fn f(&self) { println!("Baz’s impl of Foo"); }
}

impl Bar for Baz {
    fn f(&self) { println!("Baz’s impl of Bar"); }
}

let b = Baz;Run

If we were to try to call b.f(), we’d get an error:

error: multiple applicable methods in scope [E0034]
b.f();
  ^~~
note: candidate #1 is defined in an impl of the trait `main::Foo` for the type
`main::Baz`
    fn f(&self) { println!("Baz’s impl of Foo"); }
    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
note: candidate #2 is defined in an impl of the trait `main::Bar` for the type
`main::Baz`
    fn f(&self) { println!("Baz’s impl of Bar"); }
    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We need a way to disambiguate which method we need. This feature is called ‘universal function call syntax’, and it looks like this:

Foo::f(&b);
Bar::f(&b);Run

Let’s break it down.

Foo::
Bar::Run

These halves of the invocation are the types of the two traits: Foo and Bar. This is what ends up actually doing the disambiguation between the two: Rust calls the one from the trait name you use.

f(&b)Run

When we call a method like b.f() using method syntax, Rust will automatically borrow b if f() takes &self. In this case, Rust will not, and so we need to pass an explicit &b.

Angle-bracket Form

The form of UFCS we just talked about:

Trait::method(args);Run

Is a short-hand. There’s an expanded form of this that’s needed in some situations:

<Type as Trait>::method(args);Run

The <>:: syntax is a means of providing a type hint. The type goes inside the <>s. In this case, the type is Type as Trait, indicating that we want Trait’s version of method to be called here. The as Trait part is optional if it’s not ambiguous. Same with the angle brackets, hence the shorter form.

Here’s an example of using the longer form.

trait Foo {
    fn foo() -> i32;
}

struct Bar;

impl Bar {
    fn foo() -> i32 {
        20
    }
}

impl Foo for Bar {
    fn foo() -> i32 {
        10
    }
}

fn main() {
    assert_eq!(10, <Bar as Foo>::foo());
    assert_eq!(20, Bar::foo());
}Run

Using the angle bracket syntax lets you call the trait method instead of the inherent one.