1. 1. Introduction
  2. 2. Getting Started
  3. 3. Tutorial: Guessing Game
  4. 4. Syntax and Semantics
    1. 4.1. Variable Bindings
    2. 4.2. Functions
    3. 4.3. Primitive Types
    4. 4.4. Comments
    5. 4.5. if
    6. 4.6. Loops
    7. 4.7. Vectors
    8. 4.8. Ownership
    9. 4.9. References and Borrowing
    10. 4.10. Lifetimes
    11. 4.11. Mutability
    12. 4.12. Structs
    13. 4.13. Enums
    14. 4.14. Match
    15. 4.15. Patterns
    16. 4.16. Method Syntax
    17. 4.17. Strings
    18. 4.18. Generics
    19. 4.19. Traits
    20. 4.20. Drop
    21. 4.21. if let
    22. 4.22. Trait Objects
    23. 4.23. Closures
    24. 4.24. Universal Function Call Syntax
    25. 4.25. Crates and Modules
    26. 4.26. `const` and `static`
    27. 4.27. Attributes
    28. 4.28. `type` aliases
    29. 4.29. Casting between types
    30. 4.30. Associated Types
    31. 4.31. Unsized Types
    32. 4.32. Operators and Overloading
    33. 4.33. Deref coercions
    34. 4.34. Macros
    35. 4.35. Raw Pointers
    36. 4.36. `unsafe`
  5. 5. Effective Rust
    1. 5.1. The Stack and the Heap
    2. 5.2. Testing
    3. 5.3. Conditional Compilation
    4. 5.4. Documentation
    5. 5.5. Iterators
    6. 5.6. Concurrency
    7. 5.7. Error Handling
    8. 5.8. Choosing your Guarantees
    9. 5.9. FFI
    10. 5.10. Borrow and AsRef
    11. 5.11. Release Channels
    12. 5.12. Using Rust without the standard library
  6. 6. Nightly Rust
    1. 6.1. Compiler Plugins
    2. 6.2. Inline Assembly
    3. 6.3. No stdlib
    4. 6.4. Intrinsics
    5. 6.5. Lang items
    6. 6.6. Advanced linking
    7. 6.7. Benchmark Tests
    8. 6.8. Box Syntax and Patterns
    9. 6.9. Slice Patterns
    10. 6.10. Associated Constants
    11. 6.11. Custom Allocators
  7. 7. Glossary
  8. 8. Syntax Index
  9. 9. Bibliography

Conditional Compilation

Rust has a special attribute, #[cfg], which allows you to compile code based on a flag passed to the compiler. It has two forms:

#[cfg(foo)]

#[cfg(bar = "baz")]Run

They also have some helpers:

#[cfg(any(unix, windows))]

#[cfg(all(unix, target_pointer_width = "32"))]

#[cfg(not(foo))]Run

These can nest arbitrarily:

#[cfg(any(not(unix), all(target_os="macos", target_arch = "powerpc")))]Run

As for how to enable or disable these switches, if you’re using Cargo, they get set in the [features] section of your Cargo.toml:

[features]
# no features by default
default = []

# Add feature "foo" here, then you can use it. 
# Our "foo" feature depends on nothing else.
foo = []

When you do this, Cargo passes along a flag to rustc:

--cfg feature="${feature_name}"

The sum of these cfg flags will determine which ones get activated, and therefore, which code gets compiled. Let’s take this code:

#[cfg(feature = "foo")]
mod foo {
}Run

If we compile it with cargo build --features "foo", it will send the --cfg feature="foo" flag to rustc, and the output will have the mod foo in it. If we compile it with a regular cargo build, no extra flags get passed on, and so, no foo module will exist.

cfg_attr

You can also set another attribute based on a cfg variable with cfg_attr:

#[cfg_attr(a, b)]Run

Will be the same as #[b] if a is set by cfg attribute, and nothing otherwise.

cfg!

The cfg! syntax extension lets you use these kinds of flags elsewhere in your code, too:

if cfg!(target_os = "macos") || cfg!(target_os = "ios") {
    println!("Think Different!");
}Run

These will be replaced by a true or false at compile-time, depending on the configuration settings.