1. 1. Introduction
  2. 2. Getting Started
  3. 3. Tutorial: Guessing Game
  4. 4. Syntax and Semantics
    1. 4.1. Variable Bindings
    2. 4.2. Functions
    3. 4.3. Primitive Types
    4. 4.4. Comments
    5. 4.5. if
    6. 4.6. Loops
    7. 4.7. Vectors
    8. 4.8. Ownership
    9. 4.9. References and Borrowing
    10. 4.10. Lifetimes
    11. 4.11. Mutability
    12. 4.12. Structs
    13. 4.13. Enums
    14. 4.14. Match
    15. 4.15. Patterns
    16. 4.16. Method Syntax
    17. 4.17. Strings
    18. 4.18. Generics
    19. 4.19. Traits
    20. 4.20. Drop
    21. 4.21. if let
    22. 4.22. Trait Objects
    23. 4.23. Closures
    24. 4.24. Universal Function Call Syntax
    25. 4.25. Crates and Modules
    26. 4.26. `const` and `static`
    27. 4.27. Attributes
    28. 4.28. `type` aliases
    29. 4.29. Casting between types
    30. 4.30. Associated Types
    31. 4.31. Unsized Types
    32. 4.32. Operators and Overloading
    33. 4.33. Deref coercions
    34. 4.34. Macros
    35. 4.35. Raw Pointers
    36. 4.36. `unsafe`
  5. 5. Effective Rust
    1. 5.1. The Stack and the Heap
    2. 5.2. Testing
    3. 5.3. Conditional Compilation
    4. 5.4. Documentation
    5. 5.5. Iterators
    6. 5.6. Concurrency
    7. 5.7. Error Handling
    8. 5.8. Choosing your Guarantees
    9. 5.9. FFI
    10. 5.10. Borrow and AsRef
    11. 5.11. Release Channels
    12. 5.12. Using Rust without the standard library
  6. 6. Nightly Rust
    1. 6.1. Compiler Plugins
    2. 6.2. Inline Assembly
    3. 6.3. No stdlib
    4. 6.4. Intrinsics
    5. 6.5. Lang items
    6. 6.6. Advanced linking
    7. 6.7. Benchmark Tests
    8. 6.8. Box Syntax and Patterns
    9. 6.9. Slice Patterns
    10. 6.10. Associated Constants
    11. 6.11. Custom Allocators
  7. 7. Glossary
  8. 8. Syntax Index
  9. 9. Bibliography

Choosing your Guarantees

One important feature of Rust is that it lets us control the costs and guarantees of a program.

There are various “wrapper type” abstractions in the Rust standard library which embody a multitude of tradeoffs between cost, ergonomics, and guarantees. Many let one choose between run time and compile time enforcement. This section will explain a few selected abstractions in detail.

Before proceeding, it is highly recommended that one reads about ownership and borrowing in Rust.

Basic pointer types


Box<T> is an “owned” pointer, or a “box”. While it can hand out references to the contained data, it is the only owner of the data. In particular, consider the following:

let x = Box::new(1);
let y = x;
// x no longer accessible hereRun

Here, the box was moved into y. As x no longer owns it, the compiler will no longer allow the programmer to use x after this. A box can similarly be moved out of a function by returning it.

When a box (that hasn't been moved) goes out of scope, destructors are run. These destructors take care of deallocating the inner data.

This is a zero-cost abstraction for dynamic allocation. If you want to allocate some memory on the heap and safely pass around a pointer to that memory, this is ideal. Note that you will only be allowed to share references to this by the regular borrowing rules, checked at compile time.

&T and &mut T

These are immutable and mutable references respectively. They follow the “read-write lock” pattern, such that one may either have only one mutable reference to some data, or any number of immutable ones, but not both. This guarantee is enforced at compile time, and has no visible cost at runtime. In most cases these two pointer types suffice for sharing cheap references between sections of code.

These pointers cannot be copied in such a way that they outlive the lifetime associated with them.

*const T and *mut T

These are C-like raw pointers with no lifetime or ownership attached to them. They point to some location in memory with no other restrictions. The only guarantee that these provide is that they cannot be dereferenced except in code marked unsafe.

These are useful when building safe, low cost abstractions like Vec<T>, but should be avoided in safe code.


This is the first wrapper we will cover that has a runtime cost.

Rc<T> is a reference counted pointer. In other words, this lets us have multiple "owning" pointers to the same data, and the data will be dropped (destructors will be run) when all pointers are out of scope.

Internally, it contains a shared “reference count” (also called “refcount”), which is incremented each time the Rc is cloned, and decremented each time one of the Rcs goes out of scope. The main responsibility of Rc<T> is to ensure that destructors are called for shared data.

The internal data here is immutable, and if a cycle of references is created, the data will be leaked. If we want data that doesn't leak when there are cycles, we need a garbage collector.


The main guarantee provided here is that the data will not be destroyed until all references to it are out of scope.

This should be used when we wish to dynamically allocate and share some data (read-only) between various portions of your program, where it is not certain which portion will finish using the pointer last. It's a viable alternative to &T when &T is either impossible to statically check for correctness, or creates extremely unergonomic code where the programmer does not wish to spend the development cost of working with.

This pointer is not thread safe, and Rust will not let it be sent or shared with other threads. This lets one avoid the cost of atomics in situations where they are unnecessary.

There is a sister smart pointer to this one, Weak<T>. This is a non-owning, but also non-borrowed, smart pointer. It is also similar to &T, but it is not restricted in lifetime—a Weak<T> can be held on to forever. However, it is possible that an attempt to access the inner data may fail and return None, since this can outlive the owned Rcs. This is useful for cyclic data structures and other things.


As far as memory goes, Rc<T> is a single allocation, though it will allocate two extra words (i.e. two usize values) as compared to a regular Box<T> (for "strong" and "weak" refcounts).

Rc<T> has the computational cost of incrementing/decrementing the refcount whenever it is cloned or goes out of scope respectively. Note that a clone will not do a deep copy, rather it will simply increment the inner reference count and return a copy of the Rc<T>.

Cell types

Cells provide interior mutability. In other words, they contain data which can be manipulated even if the type cannot be obtained in a mutable form (for example, when it is behind an &-ptr or Rc<T>).

The documentation for the cell module has a pretty good explanation for these.

These types are generally found in struct fields, but they may be found elsewhere too.


Cell<T> is a type that provides zero-cost interior mutability, but only for Copy types. Since the compiler knows that all the data owned by the contained value is on the stack, there's no worry of leaking any data behind references (or worse!) by simply replacing the data.

It is still possible to violate your own invariants using this wrapper, so be careful when using it. If a field is wrapped in Cell, it's a nice indicator that the chunk of data is mutable and may not stay the same between the time you first read it and when you intend to use it.

use std::cell::Cell;

let x = Cell::new(1);
let y = &x;
let z = &x;
println!("{}", x.get());Run

Note that here we were able to mutate the same value from various immutable references.

This has the same runtime cost as the following:

let mut x = 1;
let y = &mut x;
let z = &mut x;
x = 2;
*y = 3;
*z = 4;
println!("{}", x);Run

but it has the added benefit of actually compiling successfully.


This relaxes the “no aliasing with mutability” restriction in places where it's unnecessary. However, this also relaxes the guarantees that the restriction provides; so if your invariants depend on data stored within Cell, you should be careful.

This is useful for mutating primitives and other Copy types when there is no easy way of doing it in line with the static rules of & and &mut.

Cell does not let you obtain interior references to the data, which makes it safe to freely mutate.


There is no runtime cost to using Cell<T>, however if you are using it to wrap larger (Copy) structs, it might be worthwhile to instead wrap individual fields in Cell<T> since each write is otherwise a full copy of the struct.


RefCell<T> also provides interior mutability, but isn't restricted to Copy types.

Instead, it has a runtime cost. RefCell<T> enforces the read-write lock pattern at runtime (it's like a single-threaded mutex), unlike &T/&mut T which do so at compile time. This is done by the borrow() and borrow_mut() functions, which modify an internal reference count and return smart pointers which can be dereferenced immutably and mutably respectively. The refcount is restored when the smart pointers go out of scope. With this system, we can dynamically ensure that there are never any other borrows active when a mutable borrow is active. If the programmer attempts to make such a borrow, the thread will panic.

use std::cell::RefCell;

let x = RefCell::new(vec![1,2,3,4]);
    println!("{:?}", *x.borrow())

    let mut my_ref = x.borrow_mut();

Similar to Cell, this is mainly useful for situations where it's hard or impossible to satisfy the borrow checker. Generally we know that such mutations won't happen in a nested form, but it's good to check.

For large, complicated programs, it becomes useful to put some things in RefCells to make things simpler. For example, a lot of the maps in the ctxt struct in the Rust compiler internals are inside this wrapper. These are only modified once (during creation, which is not right after initialization) or a couple of times in well-separated places. However, since this struct is pervasively used everywhere, juggling mutable and immutable pointers would be hard (perhaps impossible) and probably form a soup of &-ptrs which would be hard to extend. On the other hand, the RefCell provides a cheap (not zero-cost) way of safely accessing these. In the future, if someone adds some code that attempts to modify the cell when it's already borrowed, it will cause a (usually deterministic) panic which can be traced back to the offending borrow.

Similarly, in Servo's DOM there is a lot of mutation, most of which is local to a DOM type, but some of which crisscrosses the DOM and modifies various things. Using RefCell and Cell to guard all mutation lets us avoid worrying about mutability everywhere, and it simultaneously highlights the places where mutation is actually happening.

Note that RefCell should be avoided if a mostly simple solution is possible with & pointers.


RefCell relaxes the static restrictions preventing aliased mutation, and replaces them with dynamic ones. As such the guarantees have not changed.


RefCell does not allocate, but it contains an additional "borrow state" indicator (one word in size) along with the data.

At runtime each borrow causes a modification/check of the refcount.

Synchronous types

Many of the types above cannot be used in a threadsafe manner. Particularly, Rc<T> and RefCell<T>, which both use non-atomic reference counts (atomic reference counts are those which can be incremented from multiple threads without causing a data race), cannot be used this way. This makes them cheaper to use, but we need thread safe versions of these too. They exist, in the form of Arc<T> and Mutex<T>/RwLock<T>

Note that the non-threadsafe types cannot be sent between threads, and this is checked at compile time.

There are many useful wrappers for concurrent programming in the sync module, but only the major ones will be covered below.


Arc<T> is a version of Rc<T> that uses an atomic reference count (hence, "Arc"). This can be sent freely between threads.

C++'s shared_ptr is similar to Arc, however in the case of C++ the inner data is always mutable. For semantics similar to that from C++, we should use Arc<Mutex<T>>, Arc<RwLock<T>>, or Arc<UnsafeCell<T>>1 (UnsafeCell<T> is a cell type that can be used to hold any data and has no runtime cost, but accessing it requires unsafe blocks). The last one should only be used if we are certain that the usage won't cause any memory unsafety. Remember that writing to a struct is not an atomic operation, and many functions like vec.push() can reallocate internally and cause unsafe behavior, so even monotonicity may not be enough to justify UnsafeCell.


Like Rc, this provides the (thread safe) guarantee that the destructor for the internal data will be run when the last Arc goes out of scope (barring any cycles).


This has the added cost of using atomics for changing the refcount (which will happen whenever it is cloned or goes out of scope). When sharing data from an Arc in a single thread, it is preferable to share & pointers whenever possible.

Mutex<T> and RwLock<T>

Mutex<T> and RwLock<T> provide mutual-exclusion via RAII guards (guards are objects which maintain some state, like a lock, until their destructor is called). For both of these, the mutex is opaque until we call lock() on it, at which point the thread will block until a lock can be acquired, and then a guard will be returned. This guard can be used to access the inner data (mutably), and the lock will be released when the guard goes out of scope.

    let guard = mutex.lock();
    // guard dereferences mutably to the inner type
    *guard += 1;
} // lock released when destructor runsRun

RwLock has the added benefit of being efficient for multiple reads. It is always safe to have multiple readers to shared data as long as there are no writers; and RwLock lets readers acquire a "read lock". Such locks can be acquired concurrently and are kept track of via a reference count. Writers must obtain a "write lock" which can only be obtained when all readers have gone out of scope.


Both of these provide safe shared mutability across threads, however they are prone to deadlocks. Some level of additional protocol safety can be obtained via the type system.


These use internal atomic-like types to maintain the locks, which are pretty costly (they can block all memory reads across processors till they're done). Waiting on these locks can also be slow when there's a lot of concurrent access happening.


A common gripe when reading Rust code is with types like Rc<RefCell<Vec<T>>> (or even more complicated compositions of such types). It's not always clear what the composition does, or why the author chose one like this (and when one should be using such a composition in one's own code)

Usually, it's a case of composing together the guarantees that you need, without paying for stuff that is unnecessary.

For example, Rc<RefCell<T>> is one such composition. Rc<T> itself can't be dereferenced mutably; because Rc<T> provides sharing and shared mutability can lead to unsafe behavior, so we put RefCell<T> inside to get dynamically verified shared mutability. Now we have shared mutable data, but it's shared in a way that there can only be one mutator (and no readers) or multiple readers.

Now, we can take this a step further, and have Rc<RefCell<Vec<T>>> or Rc<Vec<RefCell<T>>>. These are both shareable, mutable vectors, but they're not the same.

With the former, the RefCell<T> is wrapping the Vec<T>, so the Vec<T> in its entirety is mutable. At the same time, there can only be one mutable borrow of the whole Vec at a given time. This means that your code cannot simultaneously work on different elements of the vector from different Rc handles. However, we are able to push and pop from the Vec<T> at will. This is similar to a &mut Vec<T> with the borrow checking done at runtime.

With the latter, the borrowing is of individual elements, but the overall vector is immutable. Thus, we can independently borrow separate elements, but we cannot push or pop from the vector. This is similar to a &mut [T]2, but, again, the borrow checking is at runtime.

In concurrent programs, we have a similar situation with Arc<Mutex<T>>, which provides shared mutability and ownership.

When reading code that uses these, go in step by step and look at the guarantees/costs provided.

When choosing a composed type, we must do the reverse; figure out which guarantees we want, and at which point of the composition we need them. For example, if there is a choice between Vec<RefCell<T>> and RefCell<Vec<T>>, we should figure out the tradeoffs as done above and pick one.

  1. Arc<UnsafeCell<T>> actually won't compile since UnsafeCell<T> isn't Send or Sync, but we can wrap it in a type and implement Send/Sync for it manually to get Arc<Wrapper<T>> where Wrapper is struct Wrapper<T>(UnsafeCell<T>)

  2. &[T] and &mut [T] are slices; they consist of a pointer and a length and can refer to a portion of a vector or array. &mut [T] can have its elements mutated, however its length cannot be touched.