1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Utilities for formatting and printing strings

#![stable(feature = "rust1", since = "1.0.0")]

use prelude::*;

use cell::{Cell, RefCell, Ref, RefMut, BorrowState};
use marker::PhantomData;
use mem;
use num::flt2dec;
use ops::Deref;
use result;
use slice;
use str;
use self::rt::v1::Alignment;

pub use self::num::radix;
pub use self::num::Radix;
pub use self::num::RadixFmt;

pub use self::builders::{DebugStruct, DebugTuple, DebugSet, DebugList, DebugMap};

mod num;
mod builders;

#[unstable(feature = "core", reason = "internal to format_args!")]
#[doc(hidden)]
pub mod rt {
    pub mod v1;
}

#[stable(feature = "rust1", since = "1.0.0")]
/// The type returned by formatter methods.
pub type Result = result::Result<(), Error>;

/// The error type which is returned from formatting a message into a stream.
///
/// This type does not support transmission of an error other than that an error
/// occurred. Any extra information must be arranged to be transmitted through
/// some other means.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Copy, Clone, Debug)]
pub struct Error;

/// A collection of methods that are required to format a message into a stream.
///
/// This trait is the type which this modules requires when formatting
/// information. This is similar to the standard library's `io::Write` trait,
/// but it is only intended for use in libcore.
///
/// This trait should generally not be implemented by consumers of the standard
/// library. The `write!` macro accepts an instance of `io::Write`, and the
/// `io::Write` trait is favored over implementing this trait.
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Write {
    /// Writes a slice of bytes into this writer, returning whether the write
    /// succeeded.
    ///
    /// This method can only succeed if the entire byte slice was successfully
    /// written, and this method will not return until all data has been
    /// written or an error occurs.
    ///
    /// # Errors
    ///
    /// This function will return an instance of `FormatError` on error.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn write_str(&mut self, s: &str) -> Result;

    /// Writes a `char` into this writer, returning whether the write succeeded.
    ///
    /// A single `char` may be encoded as more than one byte.
    /// This method can only succeed if the entire byte sequence was successfully
    /// written, and this method will not return until all data has been
    /// written or an error occurs.
    ///
    /// # Errors
    ///
    /// This function will return an instance of `FormatError` on error.
    #[stable(feature = "fmt_write_char", since = "1.1.0")]
    fn write_char(&mut self, c: char) -> Result {
        let mut utf_8 = [0u8; 4];
        let bytes_written = c.encode_utf8(&mut utf_8).unwrap_or(0);
        self.write_str(unsafe { mem::transmute(&utf_8[..bytes_written]) })
    }

    /// Glue for usage of the `write!` macro with implementers of this trait.
    ///
    /// This method should generally not be invoked manually, but rather through
    /// the `write!` macro itself.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn write_fmt(&mut self, args: Arguments) -> Result {
        // This Adapter is needed to allow `self` (of type `&mut
        // Self`) to be cast to a Write (below) without
        // requiring a `Sized` bound.
        struct Adapter<'a,T: ?Sized +'a>(&'a mut T);

        impl<'a, T: ?Sized> Write for Adapter<'a, T>
            where T: Write
        {
            fn write_str(&mut self, s: &str) -> Result {
                self.0.write_str(s)
            }

            fn write_fmt(&mut self, args: Arguments) -> Result {
                self.0.write_fmt(args)
            }
        }

        write(&mut Adapter(self), args)
    }
}

/// A struct to represent both where to emit formatting strings to and how they
/// should be formatted. A mutable version of this is passed to all formatting
/// traits.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Formatter<'a> {
    flags: u32,
    fill: char,
    align: rt::v1::Alignment,
    width: Option<usize>,
    precision: Option<usize>,

    buf: &'a mut (Write+'a),
    curarg: slice::Iter<'a, ArgumentV1<'a>>,
    args: &'a [ArgumentV1<'a>],
}

// NB. Argument is essentially an optimized partially applied formatting function,
// equivalent to `exists T.(&T, fn(&T, &mut Formatter) -> Result`.

enum Void {}

/// This struct represents the generic "argument" which is taken by the Xprintf
/// family of functions. It contains a function to format the given value. At
/// compile time it is ensured that the function and the value have the correct
/// types, and then this struct is used to canonicalize arguments to one type.
#[derive(Copy)]
#[unstable(feature = "core", reason = "internal to format_args!")]
#[doc(hidden)]
pub struct ArgumentV1<'a> {
    value: &'a Void,
    formatter: fn(&Void, &mut Formatter) -> Result,
}

impl<'a> Clone for ArgumentV1<'a> {
    fn clone(&self) -> ArgumentV1<'a> {
        *self
    }
}

impl<'a> ArgumentV1<'a> {
    #[inline(never)]
    fn show_usize(x: &usize, f: &mut Formatter) -> Result {
        Display::fmt(x, f)
    }

    #[doc(hidden)]
    #[unstable(feature = "core", reason = "internal to format_args!")]
    pub fn new<'b, T>(x: &'b T,
                      f: fn(&T, &mut Formatter) -> Result) -> ArgumentV1<'b> {
        unsafe {
            ArgumentV1 {
                formatter: mem::transmute(f),
                value: mem::transmute(x)
            }
        }
    }

    #[doc(hidden)]
    #[unstable(feature = "core", reason = "internal to format_args!")]
    pub fn from_usize(x: &usize) -> ArgumentV1 {
        ArgumentV1::new(x, ArgumentV1::show_usize)
    }

    fn as_usize(&self) -> Option<usize> {
        if self.formatter as usize == ArgumentV1::show_usize as usize {
            Some(unsafe { *(self.value as *const _ as *const usize) })
        } else {
            None
        }
    }
}

// flags available in the v1 format of format_args
#[derive(Copy, Clone)]
#[allow(dead_code)] // SignMinus isn't currently used
enum FlagV1 { SignPlus, SignMinus, Alternate, SignAwareZeroPad, }

impl<'a> Arguments<'a> {
    /// When using the format_args!() macro, this function is used to generate the
    /// Arguments structure.
    #[doc(hidden)] #[inline]
    #[unstable(feature = "core", reason = "internal to format_args!")]
    pub fn new_v1(pieces: &'a [&'a str],
                  args: &'a [ArgumentV1<'a>]) -> Arguments<'a> {
        Arguments {
            pieces: pieces,
            fmt: None,
            args: args
        }
    }

    /// This function is used to specify nonstandard formatting parameters.
    /// The `pieces` array must be at least as long as `fmt` to construct
    /// a valid Arguments structure. Also, any `Count` within `fmt` that is
    /// `CountIsParam` or `CountIsNextParam` has to point to an argument
    /// created with `argumentusize`. However, failing to do so doesn't cause
    /// unsafety, but will ignore invalid .
    #[doc(hidden)] #[inline]
    #[unstable(feature = "core", reason = "internal to format_args!")]
    pub fn new_v1_formatted(pieces: &'a [&'a str],
                            args: &'a [ArgumentV1<'a>],
                            fmt: &'a [rt::v1::Argument]) -> Arguments<'a> {
        Arguments {
            pieces: pieces,
            fmt: Some(fmt),
            args: args
        }
    }
}

/// This structure represents a safely precompiled version of a format string
/// and its arguments. This cannot be generated at runtime because it cannot
/// safely be done so, so no constructors are given and the fields are private
/// to prevent modification.
///
/// The `format_args!` macro will safely create an instance of this structure
/// and pass it to a function or closure, passed as the first argument. The
/// macro validates the format string at compile-time so usage of the `write`
/// and `format` functions can be safely performed.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Copy, Clone)]
pub struct Arguments<'a> {
    // Format string pieces to print.
    pieces: &'a [&'a str],

    // Placeholder specs, or `None` if all specs are default (as in "{}{}").
    fmt: Option<&'a [rt::v1::Argument]>,

    // Dynamic arguments for interpolation, to be interleaved with string
    // pieces. (Every argument is preceded by a string piece.)
    args: &'a [ArgumentV1<'a>],
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Debug for Arguments<'a> {
    fn fmt(&self, fmt: &mut Formatter) -> Result {
        Display::fmt(self, fmt)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Display for Arguments<'a> {
    fn fmt(&self, fmt: &mut Formatter) -> Result {
        write(fmt.buf, *self)
    }
}

/// Format trait for the `:?` format. Useful for debugging, all types
/// should implement this.
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "`{Self}` cannot be formatted using `:?`; if it is \
                            defined in your crate, add `#[derive(Debug)]` or \
                            manually implement it"]
#[lang = "debug_trait"]
pub trait Debug {
    /// Formats the value using the given formatter.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, &mut Formatter) -> Result;
}

/// When a value can be semantically expressed as a String, this trait may be
/// used. It corresponds to the default format, `{}`.
#[rustc_on_unimplemented = "`{Self}` cannot be formatted with the default \
                            formatter; try using `:?` instead if you are using \
                            a format string"]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Display {
    /// Formats the value using the given formatter.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, &mut Formatter) -> Result;
}

/// Format trait for the `o` character
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Octal {
    /// Formats the value using the given formatter.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, &mut Formatter) -> Result;
}

/// Format trait for the `b` character
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Binary {
    /// Formats the value using the given formatter.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, &mut Formatter) -> Result;
}

/// Format trait for the `x` character
#[stable(feature = "rust1", since = "1.0.0")]
pub trait LowerHex {
    /// Formats the value using the given formatter.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, &mut Formatter) -> Result;
}

/// Format trait for the `X` character
#[stable(feature = "rust1", since = "1.0.0")]
pub trait UpperHex {
    /// Formats the value using the given formatter.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, &mut Formatter) -> Result;
}

/// Format trait for the `p` character
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Pointer {
    /// Formats the value using the given formatter.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, &mut Formatter) -> Result;
}

/// Format trait for the `e` character
#[stable(feature = "rust1", since = "1.0.0")]
pub trait LowerExp {
    /// Formats the value using the given formatter.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, &mut Formatter) -> Result;
}

/// Format trait for the `E` character
#[stable(feature = "rust1", since = "1.0.0")]
pub trait UpperExp {
    /// Formats the value using the given formatter.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, &mut Formatter) -> Result;
}

/// The `write` function takes an output stream, a precompiled format string,
/// and a list of arguments. The arguments will be formatted according to the
/// specified format string into the output stream provided.
///
/// # Arguments
///
///   * output - the buffer to write output to
///   * args - the precompiled arguments generated by `format_args!`
#[stable(feature = "rust1", since = "1.0.0")]
pub fn write(output: &mut Write, args: Arguments) -> Result {
    let mut formatter = Formatter {
        flags: 0,
        width: None,
        precision: None,
        buf: output,
        align: Alignment::Unknown,
        fill: ' ',
        args: args.args,
        curarg: args.args.iter(),
    };

    let mut pieces = args.pieces.iter();

    match args.fmt {
        None => {
            // We can use default formatting parameters for all arguments.
            for (arg, piece) in args.args.iter().zip(pieces.by_ref()) {
                try!(formatter.buf.write_str(*piece));
                try!((arg.formatter)(arg.value, &mut formatter));
            }
        }
        Some(fmt) => {
            // Every spec has a corresponding argument that is preceded by
            // a string piece.
            for (arg, piece) in fmt.iter().zip(pieces.by_ref()) {
                try!(formatter.buf.write_str(*piece));
                try!(formatter.run(arg));
            }
        }
    }

    // There can be only one trailing string piece left.
    match pieces.next() {
        Some(piece) => {
            try!(formatter.buf.write_str(*piece));
        }
        None => {}
    }

    Ok(())
}

impl<'a> Formatter<'a> {

    // First up is the collection of functions used to execute a format string
    // at runtime. This consumes all of the compile-time statics generated by
    // the format! syntax extension.
    fn run(&mut self, arg: &rt::v1::Argument) -> Result {
        // Fill in the format parameters into the formatter
        self.fill = arg.format.fill;
        self.align = arg.format.align;
        self.flags = arg.format.flags;
        self.width = self.getcount(&arg.format.width);
        self.precision = self.getcount(&arg.format.precision);

        // Extract the correct argument
        let value = match arg.position {
            rt::v1::Position::Next => { *self.curarg.next().unwrap() }
            rt::v1::Position::At(i) => self.args[i],
        };

        // Then actually do some printing
        (value.formatter)(value.value, self)
    }

    fn getcount(&mut self, cnt: &rt::v1::Count) -> Option<usize> {
        match *cnt {
            rt::v1::Count::Is(n) => Some(n),
            rt::v1::Count::Implied => None,
            rt::v1::Count::Param(i) => {
                self.args[i].as_usize()
            }
            rt::v1::Count::NextParam => {
                self.curarg.next().and_then(|arg| arg.as_usize())
            }
        }
    }

    // Helper methods used for padding and processing formatting arguments that
    // all formatting traits can use.

    /// Performs the correct padding for an integer which has already been
    /// emitted into a str. The str should *not* contain the sign for the
    /// integer, that will be added by this method.
    ///
    /// # Arguments
    ///
    /// * is_positive - whether the original integer was positive or not.
    /// * prefix - if the '#' character (Alternate) is provided, this
    ///   is the prefix to put in front of the number.
    /// * buf - the byte array that the number has been formatted into
    ///
    /// This function will correctly account for the flags provided as well as
    /// the minimum width. It will not take precision into account.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn pad_integral(&mut self,
                        is_positive: bool,
                        prefix: &str,
                        buf: &str)
                        -> Result {
        use char::CharExt;

        let mut width = buf.len();

        let mut sign = None;
        if !is_positive {
            sign = Some('-'); width += 1;
        } else if self.flags & (1 << (FlagV1::SignPlus as u32)) != 0 {
            sign = Some('+'); width += 1;
        }

        let mut prefixed = false;
        if self.flags & (1 << (FlagV1::Alternate as u32)) != 0 {
            prefixed = true; width += prefix.char_len();
        }

        // Writes the sign if it exists, and then the prefix if it was requested
        let write_prefix = |f: &mut Formatter| {
            if let Some(c) = sign {
                let mut b = [0; 4];
                let n = c.encode_utf8(&mut b).unwrap_or(0);
                let b = unsafe { str::from_utf8_unchecked(&b[..n]) };
                try!(f.buf.write_str(b));
            }
            if prefixed { f.buf.write_str(prefix) }
            else { Ok(()) }
        };

        // The `width` field is more of a `min-width` parameter at this point.
        match self.width {
            // If there's no minimum length requirements then we can just
            // write the bytes.
            None => {
                try!(write_prefix(self)); self.buf.write_str(buf)
            }
            // Check if we're over the minimum width, if so then we can also
            // just write the bytes.
            Some(min) if width >= min => {
                try!(write_prefix(self)); self.buf.write_str(buf)
            }
            // The sign and prefix goes before the padding if the fill character
            // is zero
            Some(min) if self.flags & (1 << (FlagV1::SignAwareZeroPad as u32)) != 0 => {
                self.fill = '0';
                try!(write_prefix(self));
                self.with_padding(min - width, Alignment::Right, |f| {
                    f.buf.write_str(buf)
                })
            }
            // Otherwise, the sign and prefix goes after the padding
            Some(min) => {
                self.with_padding(min - width, Alignment::Right, |f| {
                    try!(write_prefix(f)); f.buf.write_str(buf)
                })
            }
        }
    }

    /// This function takes a string slice and emits it to the internal buffer
    /// after applying the relevant formatting flags specified. The flags
    /// recognized for generic strings are:
    ///
    /// * width - the minimum width of what to emit
    /// * fill/align - what to emit and where to emit it if the string
    ///                provided needs to be padded
    /// * precision - the maximum length to emit, the string is truncated if it
    ///               is longer than this length
    ///
    /// Notably this function ignored the `flag` parameters
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn pad(&mut self, s: &str) -> Result {
        // Make sure there's a fast path up front
        if self.width.is_none() && self.precision.is_none() {
            return self.buf.write_str(s);
        }
        // The `precision` field can be interpreted as a `max-width` for the
        // string being formatted
        match self.precision {
            Some(max) => {
                // If there's a maximum width and our string is longer than
                // that, then we must always have truncation. This is the only
                // case where the maximum length will matter.
                let char_len = s.char_len();
                if char_len >= max {
                    let nchars = ::cmp::min(max, char_len);
                    return self.buf.write_str(s.slice_chars(0, nchars));
                }
            }
            None => {}
        }
        // The `width` field is more of a `min-width` parameter at this point.
        match self.width {
            // If we're under the maximum length, and there's no minimum length
            // requirements, then we can just emit the string
            None => self.buf.write_str(s),
            // If we're under the maximum width, check if we're over the minimum
            // width, if so it's as easy as just emitting the string.
            Some(width) if s.char_len() >= width => {
                self.buf.write_str(s)
            }
            // If we're under both the maximum and the minimum width, then fill
            // up the minimum width with the specified string + some alignment.
            Some(width) => {
                self.with_padding(width - s.char_len(), Alignment::Left, |me| {
                    me.buf.write_str(s)
                })
            }
        }
    }

    /// Runs a callback, emitting the correct padding either before or
    /// afterwards depending on whether right or left alignment is requested.
    fn with_padding<F>(&mut self, padding: usize, default: Alignment,
                       f: F) -> Result
        where F: FnOnce(&mut Formatter) -> Result,
    {
        use char::CharExt;
        let align = match self.align {
            Alignment::Unknown => default,
            _ => self.align
        };

        let (pre_pad, post_pad) = match align {
            Alignment::Left => (0, padding),
            Alignment::Right | Alignment::Unknown => (padding, 0),
            Alignment::Center => (padding / 2, (padding + 1) / 2),
        };

        let mut fill = [0; 4];
        let len = self.fill.encode_utf8(&mut fill).unwrap_or(0);
        let fill = unsafe { str::from_utf8_unchecked(&fill[..len]) };

        for _ in 0..pre_pad {
            try!(self.buf.write_str(fill));
        }

        try!(f(self));

        for _ in 0..post_pad {
            try!(self.buf.write_str(fill));
        }

        Ok(())
    }

    /// Takes the formatted parts and applies the padding.
    /// Assumes that the caller already has rendered the parts with required precision,
    /// so that `self.precision` can be ignored.
    fn pad_formatted_parts(&mut self, formatted: &flt2dec::Formatted) -> Result {
        if let Some(mut width) = self.width {
            // for the sign-aware zero padding, we render the sign first and
            // behave as if we had no sign from the beginning.
            let mut formatted = formatted.clone();
            let mut align = self.align;
            let old_fill = self.fill;
            if self.flags & (1 << (FlagV1::SignAwareZeroPad as u32)) != 0 {
                // a sign always goes first
                let sign = unsafe { str::from_utf8_unchecked(formatted.sign) };
                try!(self.buf.write_str(sign));

                // remove the sign from the formatted parts
                formatted.sign = b"";
                width = if width < sign.len() { 0 } else { width - sign.len() };
                align = Alignment::Right;
                self.fill = '0';
            }

            // remaining parts go through the ordinary padding process.
            let len = formatted.len();
            let ret = if width <= len { // no padding
                self.write_formatted_parts(&formatted)
            } else {
                self.with_padding(width - len, align, |f| {
                    f.write_formatted_parts(&formatted)
                })
            };
            self.fill = old_fill;
            ret
        } else {
            // this is the common case and we take a shortcut
            self.write_formatted_parts(formatted)
        }
    }

    fn write_formatted_parts(&mut self, formatted: &flt2dec::Formatted) -> Result {
        fn write_bytes(buf: &mut Write, s: &[u8]) -> Result {
            buf.write_str(unsafe { str::from_utf8_unchecked(s) })
        }

        if !formatted.sign.is_empty() {
            try!(write_bytes(self.buf, formatted.sign));
        }
        for part in formatted.parts {
            match *part {
                flt2dec::Part::Zero(mut nzeroes) => {
                    const ZEROES: &'static str = // 64 zeroes
                        "0000000000000000000000000000000000000000000000000000000000000000";
                    while nzeroes > ZEROES.len() {
                        try!(self.buf.write_str(ZEROES));
                        nzeroes -= ZEROES.len();
                    }
                    if nzeroes > 0 {
                        try!(self.buf.write_str(&ZEROES[..nzeroes]));
                    }
                }
                flt2dec::Part::Num(mut v) => {
                    let mut s = [0; 5];
                    let len = part.len();
                    for c in s[..len].iter_mut().rev() {
                        *c = b'0' + (v % 10) as u8;
                        v /= 10;
                    }
                    try!(write_bytes(self.buf, &s[..len]));
                }
                flt2dec::Part::Copy(buf) => {
                    try!(write_bytes(self.buf, buf));
                }
            }
        }
        Ok(())
    }

    /// Writes some data to the underlying buffer contained within this
    /// formatter.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn write_str(&mut self, data: &str) -> Result {
        self.buf.write_str(data)
    }

    /// Writes some formatted information into this instance
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn write_fmt(&mut self, fmt: Arguments) -> Result {
        write(self.buf, fmt)
    }

    /// Flags for formatting (packed version of rt::Flag)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn flags(&self) -> u32 { self.flags }

    /// Character used as 'fill' whenever there is alignment
    #[unstable(feature = "core", reason = "method was just created")]
    pub fn fill(&self) -> char { self.fill }

    /// Flag indicating what form of alignment was requested
    #[unstable(feature = "core", reason = "method was just created")]
    pub fn align(&self) -> Alignment { self.align }

    /// Optionally specified integer width that the output should be
    #[unstable(feature = "core", reason = "method was just created")]
    pub fn width(&self) -> Option<usize> { self.width }

    /// Optionally specified precision for numeric types
    #[unstable(feature = "core", reason = "method was just created")]
    pub fn precision(&self) -> Option<usize> { self.precision }

    /// Creates a `DebugStruct` builder designed to assist with creation of
    /// `fmt::Debug` implementations for structs.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #![feature(debug_builders, core)]
    /// use std::fmt;
    ///
    /// struct Foo {
    ///     bar: i32,
    ///     baz: String,
    /// }
    ///
    /// impl fmt::Debug for Foo {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
    ///         fmt.debug_struct("Foo")
    ///             .field("bar", &self.bar)
    ///             .field("baz", &self.baz)
    ///             .finish()
    ///     }
    /// }
    ///
    /// // prints "Foo { bar: 10, baz: "Hello World" }"
    /// println!("{:?}", Foo { bar: 10, baz: "Hello World".to_string() });
    /// ```
    #[unstable(feature = "debug_builders", reason = "method was just created")]
    #[inline]
    pub fn debug_struct<'b>(&'b mut self, name: &str) -> DebugStruct<'b, 'a> {
        builders::debug_struct_new(self, name)
    }

    /// Creates a `DebugTuple` builder designed to assist with creation of
    /// `fmt::Debug` implementations for tuple structs.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #![feature(debug_builders, core)]
    /// use std::fmt;
    ///
    /// struct Foo(i32, String);
    ///
    /// impl fmt::Debug for Foo {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
    ///         fmt.debug_tuple("Foo")
    ///             .field(&self.0)
    ///             .field(&self.1)
    ///             .finish()
    ///     }
    /// }
    ///
    /// // prints "Foo(10, "Hello World")"
    /// println!("{:?}", Foo(10, "Hello World".to_string()));
    /// ```
    #[unstable(feature = "debug_builders", reason = "method was just created")]
    #[inline]
    pub fn debug_tuple<'b>(&'b mut self, name: &str) -> DebugTuple<'b, 'a> {
        builders::debug_tuple_new(self, name)
    }

    /// Creates a `DebugList` builder designed to assist with creation of
    /// `fmt::Debug` implementations for list-like structures.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #![feature(debug_builders, core)]
    /// use std::fmt;
    ///
    /// struct Foo(Vec<i32>);
    ///
    /// impl fmt::Debug for Foo {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
    ///         self.0.iter().fold(fmt.debug_list(), |b, e| b.entry(e)).finish()
    ///     }
    /// }
    ///
    /// // prints "[10, 11]"
    /// println!("{:?}", Foo(vec![10, 11]));
    /// ```
    #[unstable(feature = "debug_builders", reason = "method was just created")]
    #[inline]
    pub fn debug_list<'b>(&'b mut self) -> DebugList<'b, 'a> {
        builders::debug_list_new(self)
    }

    /// Creates a `DebugSet` builder designed to assist with creation of
    /// `fmt::Debug` implementations for set-like structures.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #![feature(debug_builders, core)]
    /// use std::fmt;
    ///
    /// struct Foo(Vec<i32>);
    ///
    /// impl fmt::Debug for Foo {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
    ///         self.0.iter().fold(fmt.debug_set(), |b, e| b.entry(e)).finish()
    ///     }
    /// }
    ///
    /// // prints "{10, 11}"
    /// println!("{:?}", Foo(vec![10, 11]));
    /// ```
    #[unstable(feature = "debug_builders", reason = "method was just created")]
    #[inline]
    pub fn debug_set<'b>(&'b mut self) -> DebugSet<'b, 'a> {
        builders::debug_set_new(self)
    }

    /// Creates a `DebugMap` builder designed to assist with creation of
    /// `fmt::Debug` implementations for map-like structures.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #![feature(debug_builders, core)]
    /// use std::fmt;
    ///
    /// struct Foo(Vec<(String, i32)>);
    ///
    /// impl fmt::Debug for Foo {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
    ///         self.0.iter().fold(fmt.debug_map(), |b, &(ref k, ref v)| b.entry(k, v)).finish()
    ///     }
    /// }
    ///
    /// // prints "{"A": 10, "B": 11}"
    /// println!("{:?}", Foo(vec![("A".to_string(), 10), ("B".to_string(), 11)]));
    /// ```
    #[unstable(feature = "debug_builders", reason = "method was just created")]
    #[inline]
    pub fn debug_map<'b>(&'b mut self) -> DebugMap<'b, 'a> {
        builders::debug_map_new(self)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Display for Error {
    fn fmt(&self, f: &mut Formatter) -> Result {
        Display::fmt("an error occurred when formatting an argument", f)
    }
}

// Implementations of the core formatting traits

macro_rules! fmt_refs {
    ($($tr:ident),*) => {
        $(
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a, T: ?Sized + $tr> $tr for &'a T {
            fn fmt(&self, f: &mut Formatter) -> Result { $tr::fmt(&**self, f) }
        }
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a, T: ?Sized + $tr> $tr for &'a mut T {
            fn fmt(&self, f: &mut Formatter) -> Result { $tr::fmt(&**self, f) }
        }
        )*
    }
}

fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp }

#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for bool {
    fn fmt(&self, f: &mut Formatter) -> Result {
        Display::fmt(self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Display for bool {
    fn fmt(&self, f: &mut Formatter) -> Result {
        Display::fmt(if *self { "true" } else { "false" }, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for str {
    fn fmt(&self, f: &mut Formatter) -> Result {
        try!(write!(f, "\""));
        for c in self.chars().flat_map(|c| c.escape_default()) {
            try!(write!(f, "{}", c));
        }
        write!(f, "\"")
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Display for str {
    fn fmt(&self, f: &mut Formatter) -> Result {
        f.pad(self)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for char {
    fn fmt(&self, f: &mut Formatter) -> Result {
        use char::CharExt;
        try!(write!(f, "'"));
        for c in self.escape_default() {
            try!(write!(f, "{}", c));
        }
        write!(f, "'")
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Display for char {
    fn fmt(&self, f: &mut Formatter) -> Result {
        let mut utf8 = [0; 4];
        let amt = self.encode_utf8(&mut utf8).unwrap_or(0);
        let s: &str = unsafe { mem::transmute(&utf8[..amt]) };
        Display::fmt(s, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Pointer for *const T {
    fn fmt(&self, f: &mut Formatter) -> Result {
        let old_width = f.width;
        let old_flags = f.flags;

        // The alternate flag is already treated by LowerHex as being special-
        // it denotes whether to prefix with 0x. We use it to work out whether
        // or not to zero extend, and then unconditionally set it to get the
        // prefix.
        if f.flags & 1 << (FlagV1::Alternate as u32) > 0 {
            f.flags |= 1 << (FlagV1::SignAwareZeroPad as u32);

            if let None = f.width {
                // The formats need two extra bytes, for the 0x
                if cfg!(target_pointer_width = "32") {
                    f.width = Some(10);
                } else {
                    f.width = Some(18);
                }
            }
        }
        f.flags |= 1 << (FlagV1::Alternate as u32);

        let ret = LowerHex::fmt(&(*self as usize), f);

        f.width = old_width;
        f.flags = old_flags;

        ret
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Pointer for *mut T {
    fn fmt(&self, f: &mut Formatter) -> Result {
        // FIXME(#23542) Replace with type ascription.
        #![allow(trivial_casts)]
        Pointer::fmt(&(*self as *const T), f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Pointer for &'a T {
    fn fmt(&self, f: &mut Formatter) -> Result {
        // FIXME(#23542) Replace with type ascription.
        #![allow(trivial_casts)]
        Pointer::fmt(&(*self as *const T), f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Pointer for &'a mut T {
    fn fmt(&self, f: &mut Formatter) -> Result {
        // FIXME(#23542) Replace with type ascription.
        #![allow(trivial_casts)]
        Pointer::fmt(&(&**self as *const T), f)
    }
}

// Common code of floating point Debug and Display.
fn float_to_decimal_common<T>(fmt: &mut Formatter, num: &T, negative_zero: bool) -> Result
    where T: flt2dec::DecodableFloat
{
    let force_sign = fmt.flags & (1 << (FlagV1::SignPlus as u32)) != 0;
    let sign = match (force_sign, negative_zero) {
        (false, false) => flt2dec::Sign::Minus,
        (false, true)  => flt2dec::Sign::MinusRaw,
        (true,  false) => flt2dec::Sign::MinusPlus,
        (true,  true)  => flt2dec::Sign::MinusPlusRaw,
    };

    let mut buf = [0; 1024]; // enough for f32 and f64
    let mut parts = [flt2dec::Part::Zero(0); 16];
    let formatted = if let Some(precision) = fmt.precision {
        flt2dec::to_exact_fixed_str(flt2dec::strategy::grisu::format_exact, *num, sign,
                                    precision, false, &mut buf, &mut parts)
    } else {
        flt2dec::to_shortest_str(flt2dec::strategy::grisu::format_shortest, *num, sign,
                                 0, false, &mut buf, &mut parts)
    };
    fmt.pad_formatted_parts(&formatted)
}

// Common code of floating point LowerExp and UpperExp.
fn float_to_exponential_common<T>(fmt: &mut Formatter, num: &T, upper: bool) -> Result
    where T: flt2dec::DecodableFloat
{
    let force_sign = fmt.flags & (1 << (FlagV1::SignPlus as u32)) != 0;
    let sign = match force_sign {
        false => flt2dec::Sign::Minus,
        true  => flt2dec::Sign::MinusPlus,
    };

    let mut buf = [0; 1024]; // enough for f32 and f64
    let mut parts = [flt2dec::Part::Zero(0); 16];
    let formatted = if let Some(precision) = fmt.precision {
        // 1 integral digit + `precision` fractional digits = `precision + 1` total digits
        flt2dec::to_exact_exp_str(flt2dec::strategy::grisu::format_exact, *num, sign,
                                  precision + 1, upper, &mut buf, &mut parts)
    } else {
        flt2dec::to_shortest_exp_str(flt2dec::strategy::grisu::format_shortest, *num, sign,
                                     (0, 0), upper, &mut buf, &mut parts)
    };
    fmt.pad_formatted_parts(&formatted)
}

macro_rules! floating { ($ty:ident) => {

    #[stable(feature = "rust1", since = "1.0.0")]
    impl Debug for $ty {
        fn fmt(&self, fmt: &mut Formatter) -> Result {
            float_to_decimal_common(fmt, self, true)
        }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl Display for $ty {
        fn fmt(&self, fmt: &mut Formatter) -> Result {
            float_to_decimal_common(fmt, self, false)
        }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl LowerExp for $ty {
        fn fmt(&self, fmt: &mut Formatter) -> Result {
            float_to_exponential_common(fmt, self, false)
        }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl UpperExp for $ty {
        fn fmt(&self, fmt: &mut Formatter) -> Result {
            float_to_exponential_common(fmt, self, true)
        }
    }
} }
floating! { f32 }
floating! { f64 }

// Implementation of Display/Debug for various core types

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Debug for *const T {
    fn fmt(&self, f: &mut Formatter) -> Result { Pointer::fmt(self, f) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Debug for *mut T {
    fn fmt(&self, f: &mut Formatter) -> Result { Pointer::fmt(self, f) }
}

macro_rules! peel {
    ($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
}

macro_rules! tuple {
    () => ();
    ( $($name:ident,)+ ) => (
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<$($name:Debug),*> Debug for ($($name,)*) {
            #[allow(non_snake_case, unused_assignments)]
            fn fmt(&self, f: &mut Formatter) -> Result {
                try!(write!(f, "("));
                let ($(ref $name,)*) = *self;
                let mut n = 0;
                $(
                    if n > 0 {
                        try!(write!(f, ", "));
                    }
                    try!(write!(f, "{:?}", *$name));
                    n += 1;
                )*
                if n == 1 {
                    try!(write!(f, ","));
                }
                write!(f, ")")
            }
        }
        peel! { $($name,)* }
    )
}

tuple! { T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, }

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Debug> Debug for [T] {
    fn fmt(&self, f: &mut Formatter) -> Result {
        self.iter().fold(f.debug_list(), |b, e| b.entry(e)).finish()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for () {
    fn fmt(&self, f: &mut Formatter) -> Result {
        f.pad("()")
    }
}
impl<T> Debug for PhantomData<T> {
    fn fmt(&self, f: &mut Formatter) -> Result {
        f.pad("PhantomData")
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Copy + Debug> Debug for Cell<T> {
    fn fmt(&self, f: &mut Formatter) -> Result {
        write!(f, "Cell {{ value: {:?} }}", self.get())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Debug> Debug for RefCell<T> {
    fn fmt(&self, f: &mut Formatter) -> Result {
        match self.borrow_state() {
            BorrowState::Unused | BorrowState::Reading => {
                write!(f, "RefCell {{ value: {:?} }}", self.borrow())
            }
            BorrowState::Writing => write!(f, "RefCell {{ <borrowed> }}"),
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'b, T: ?Sized + Debug> Debug for Ref<'b, T> {
    fn fmt(&self, f: &mut Formatter) -> Result {
        Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'b, T: ?Sized + Debug> Debug for RefMut<'b, T> {
    fn fmt(&self, f: &mut Formatter) -> Result {
        Debug::fmt(&*(self.deref()), f)
    }
}

// If you expected tests to be here, look instead at the run-pass/ifmt.rs test,
// it's a lot easier than creating all of the rt::Piece structures here.