1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#![unstable(feature = "async_drop", issue = "none")]

use crate::fmt;
use crate::future::{Future, IntoFuture};
use crate::intrinsics::discriminant_value;
use crate::marker::{DiscriminantKind, PhantomPinned};
use crate::mem::MaybeUninit;
use crate::pin::Pin;
use crate::task::{ready, Context, Poll};

/// Asynchronously drops a value by running `AsyncDrop::async_drop`
/// on a value and its fields recursively.
#[unstable(feature = "async_drop", issue = "none")]
pub fn async_drop<T>(value: T) -> AsyncDropOwning<T> {
    AsyncDropOwning { value: MaybeUninit::new(value), dtor: None, _pinned: PhantomPinned }
}

/// A future returned by the [`async_drop`].
#[unstable(feature = "async_drop", issue = "none")]
pub struct AsyncDropOwning<T> {
    value: MaybeUninit<T>,
    dtor: Option<AsyncDropInPlace<T>>,
    _pinned: PhantomPinned,
}

#[unstable(feature = "async_drop", issue = "none")]
impl<T> fmt::Debug for AsyncDropOwning<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("AsyncDropOwning").finish_non_exhaustive()
    }
}

#[unstable(feature = "async_drop", issue = "none")]
impl<T> Future for AsyncDropOwning<T> {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        // SAFETY: Self is pinned thus it is ok to store references to self
        unsafe {
            let this = self.get_unchecked_mut();
            let dtor = Pin::new_unchecked(
                this.dtor.get_or_insert_with(|| async_drop_in_place(this.value.as_mut_ptr())),
            );
            // AsyncDestuctors are idempotent so Self gets idempotency as well
            dtor.poll(cx)
        }
    }
}

#[lang = "async_drop_in_place"]
#[allow(unconditional_recursion)]
// FIXME: Consider if `#[rustc_diagnostic_item = "ptr_drop_in_place"]` is needed?
unsafe fn async_drop_in_place_raw<T: ?Sized>(
    to_drop: *mut T,
) -> <T as AsyncDestruct>::AsyncDestructor {
    // Code here does not matter - this is replaced by the
    // real async drop glue constructor by the compiler.

    // SAFETY: see comment above
    unsafe { async_drop_in_place_raw(to_drop) }
}

/// Creates the asynchronous destructor of the pointed-to value.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `to_drop` must be [valid](crate::ptr#safety) for both reads and writes.
///
/// * `to_drop` must be properly aligned, even if `T` has size 0.
///
/// * `to_drop` must be nonnull, even if `T` has size 0.
///
/// * The value `to_drop` points to must be valid for async dropping,
///   which may mean it must uphold additional invariants. These
///   invariants depend on the type of the value being dropped. For
///   instance, when dropping a Box, the box's pointer to the heap must
///   be valid.
///
/// * While `async_drop_in_place` is executing or the returned async
///   destructor is alive, the only way to access parts of `to_drop`
///   is through the `self: Pin<&mut Self>` references supplied to
///   the `AsyncDrop::async_drop` methods that `async_drop_in_place`
///   or `AsyncDropInPlace<T>::poll` invokes. This usually means the
///   returned future stores the `to_drop` pointer and user is required
///   to guarantee that dropped value doesn't move.
///
#[unstable(feature = "async_drop", issue = "none")]
pub unsafe fn async_drop_in_place<T: ?Sized>(to_drop: *mut T) -> AsyncDropInPlace<T> {
    // SAFETY: `async_drop_in_place_raw` has the same safety requirements
    unsafe { AsyncDropInPlace(async_drop_in_place_raw(to_drop)) }
}

/// A future returned by the [`async_drop_in_place`].
#[unstable(feature = "async_drop", issue = "none")]
pub struct AsyncDropInPlace<T: ?Sized>(<T as AsyncDestruct>::AsyncDestructor);

#[unstable(feature = "async_drop", issue = "none")]
impl<T: ?Sized> fmt::Debug for AsyncDropInPlace<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("AsyncDropInPlace").finish_non_exhaustive()
    }
}

#[unstable(feature = "async_drop", issue = "none")]
impl<T: ?Sized> Future for AsyncDropInPlace<T> {
    type Output = ();

    #[inline(always)]
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        // SAFETY: This code simply forwards poll call to the inner future
        unsafe { Pin::new_unchecked(&mut self.get_unchecked_mut().0) }.poll(cx)
    }
}

// FIXME(zetanumbers): Add same restrictions on AsyncDrop impls as
//   with Drop impls
/// Custom code within the asynchronous destructor.
#[unstable(feature = "async_drop", issue = "none")]
#[lang = "async_drop"]
pub trait AsyncDrop {
    /// A future returned by the [`AsyncDrop::async_drop`] to be part
    /// of the async destructor.
    #[unstable(feature = "async_drop", issue = "none")]
    type Dropper<'a>: Future<Output = ()>
    where
        Self: 'a;

    /// Constructs the asynchronous destructor for this type.
    #[unstable(feature = "async_drop", issue = "none")]
    fn async_drop(self: Pin<&mut Self>) -> Self::Dropper<'_>;
}

#[lang = "async_destruct"]
#[rustc_deny_explicit_impl(implement_via_object = false)]
trait AsyncDestruct {
    type AsyncDestructor: Future<Output = ()>;
}

/// Basically calls `AsyncDrop::async_drop` with pointer. Used to simplify
/// generation of the code for `async_drop_in_place_raw`
#[lang = "surface_async_drop_in_place"]
async unsafe fn surface_async_drop_in_place<T: AsyncDrop + ?Sized>(ptr: *mut T) {
    // SAFETY: We call this from async drop `async_drop_in_place_raw`
    //   which has the same safety requirements
    unsafe { <T as AsyncDrop>::async_drop(Pin::new_unchecked(&mut *ptr)).await }
}

/// Basically calls `Drop::drop` with pointer. Used to simplify generation
/// of the code for `async_drop_in_place_raw`
#[allow(drop_bounds)]
#[lang = "async_drop_surface_drop_in_place"]
async unsafe fn surface_drop_in_place<T: Drop + ?Sized>(ptr: *mut T) {
    // SAFETY: We call this from async drop `async_drop_in_place_raw`
    //   which has the same safety requirements
    unsafe { crate::ops::fallback_surface_drop(&mut *ptr) }
}

/// Wraps a future to continue outputing `Poll::Ready(())` once after
/// wrapped future completes by returning `Poll::Ready(())` on poll. This
/// is useful for constructing async destructors to guarantee this
/// "fuse" property
struct Fuse<T> {
    inner: Option<T>,
}

#[lang = "async_drop_fuse"]
fn fuse<T>(inner: T) -> Fuse<T> {
    Fuse { inner: Some(inner) }
}

impl<T> Future for Fuse<T>
where
    T: Future<Output = ()>,
{
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        // SAFETY: pin projection into `self.inner`
        unsafe {
            let this = self.get_unchecked_mut();
            if let Some(inner) = &mut this.inner {
                ready!(Pin::new_unchecked(inner).poll(cx));
                this.inner = None;
            }
        }
        Poll::Ready(())
    }
}

/// Async destructor for arrays and slices.
#[lang = "async_drop_slice"]
async unsafe fn slice<T>(s: *mut [T]) {
    let len = s.len();
    let ptr = s.as_mut_ptr();
    for i in 0..len {
        // SAFETY: we iterate over elements of `s` slice
        unsafe { async_drop_in_place_raw(ptr.add(i)).await }
    }
}

/// Construct a chain of two futures, which awaits them sequentially as
/// a future.
#[lang = "async_drop_chain"]
async fn chain<F, G>(first: F, last: G)
where
    F: IntoFuture<Output = ()>,
    G: IntoFuture<Output = ()>,
{
    first.await;
    last.await;
}

/// Basically a lazy version of `async_drop_in_place`. Returns a future
/// that would call `AsyncDrop::async_drop` on a first poll.
///
/// # Safety
///
/// Same as `async_drop_in_place` except is lazy to avoid creating
/// multiple mutable refernces.
#[lang = "async_drop_defer"]
async unsafe fn defer<T: ?Sized>(to_drop: *mut T) {
    // SAFETY: same safety requirements as `async_drop_in_place`
    unsafe { async_drop_in_place(to_drop) }.await
}

/// If `T`'s discriminant is equal to the stored one then awaits `M`
/// otherwise awaits the `O`.
///
/// # Safety
///
/// User should carefully manage returned future, since it would
/// try creating an immutable referece from `this` and get pointee's
/// discriminant.
// FIXME(zetanumbers): Send and Sync impls
#[lang = "async_drop_either"]
async unsafe fn either<O: IntoFuture<Output = ()>, M: IntoFuture<Output = ()>, T>(
    other: O,
    matched: M,
    this: *mut T,
    discr: <T as DiscriminantKind>::Discriminant,
) {
    // SAFETY: Guaranteed by the safety section of this funtion's documentation
    if unsafe { discriminant_value(&*this) } == discr {
        drop(other);
        matched.await
    } else {
        drop(matched);
        other.await
    }
}

/// Used for noop async destructors. We don't use [`core::future::Ready`]
/// because it panics after its second poll, which could be potentially
/// bad if that would happen during the cleanup.
#[derive(Clone, Copy)]
struct Noop;

#[lang = "async_drop_noop"]
fn noop() -> Noop {
    Noop
}

impl Future for Noop {
    type Output = ();

    fn poll(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Self::Output> {
        Poll::Ready(())
    }
}