Skip to main content

core/
time.rs

1#![stable(feature = "duration_core", since = "1.25.0")]
2
3//! Temporal quantification.
4//!
5//! # Examples:
6//!
7//! There are multiple ways to create a new [`Duration`]:
8//!
9//! ```
10//! # use std::time::Duration;
11//! let five_seconds = Duration::from_secs(5);
12//! assert_eq!(five_seconds, Duration::from_millis(5_000));
13//! assert_eq!(five_seconds, Duration::from_micros(5_000_000));
14//! assert_eq!(five_seconds, Duration::from_nanos(5_000_000_000));
15//!
16//! let ten_seconds = Duration::from_secs(10);
17//! let seven_nanos = Duration::from_nanos(7);
18//! let total = ten_seconds + seven_nanos;
19//! assert_eq!(total, Duration::new(10, 7));
20//! ```
21
22use crate::fmt;
23use crate::iter::Sum;
24use crate::num::niche_types::Nanoseconds;
25use crate::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
26
27const NANOS_PER_SEC: u32 = 1_000_000_000;
28const NANOS_PER_MILLI: u32 = 1_000_000;
29const NANOS_PER_MICRO: u32 = 1_000;
30const MILLIS_PER_SEC: u64 = 1_000;
31const MICROS_PER_SEC: u64 = 1_000_000;
32#[unstable(feature = "duration_units", issue = "120301")]
33const SECS_PER_MINUTE: u64 = 60;
34#[unstable(feature = "duration_units", issue = "120301")]
35const MINS_PER_HOUR: u64 = 60;
36#[unstable(feature = "duration_units", issue = "120301")]
37const HOURS_PER_DAY: u64 = 24;
38#[unstable(feature = "duration_units", issue = "120301")]
39const DAYS_PER_WEEK: u64 = 7;
40
41/// A `Duration` type to represent a span of time, typically used for system
42/// timeouts.
43///
44/// Each `Duration` is composed of a whole number of seconds and a fractional part
45/// represented in nanoseconds. If the underlying system does not support
46/// nanosecond-level precision, APIs binding a system timeout will typically round up
47/// the number of nanoseconds.
48///
49/// [`Duration`]s implement many common traits, including [`Add`], [`Sub`], and other
50/// [`ops`] traits. It implements [`Default`] by returning a zero-length `Duration`.
51///
52/// [`ops`]: crate::ops
53///
54/// # Examples
55///
56/// ```
57/// use std::time::Duration;
58///
59/// let five_seconds = Duration::new(5, 0);
60/// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5);
61///
62/// assert_eq!(five_seconds_and_five_nanos.as_secs(), 5);
63/// assert_eq!(five_seconds_and_five_nanos.subsec_nanos(), 5);
64///
65/// let ten_millis = Duration::from_millis(10);
66/// ```
67///
68/// # Formatting `Duration` values
69///
70/// `Duration` intentionally does not have a `Display` impl, as there are a
71/// variety of ways to format spans of time for human readability. `Duration`
72/// provides a `Debug` impl that shows the full precision of the value.
73///
74/// The `Debug` output uses the non-ASCII "µs" suffix for microseconds. If your
75/// program output may appear in contexts that cannot rely on full Unicode
76/// compatibility, you may wish to format `Duration` objects yourself or use a
77/// crate to do so.
78#[stable(feature = "duration", since = "1.3.0")]
79#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
80#[rustc_diagnostic_item = "Duration"]
81pub struct Duration {
82    secs: u64,
83    nanos: Nanoseconds, // Always 0 <= nanos < NANOS_PER_SEC
84}
85
86impl Duration {
87    /// The duration of one second.
88    ///
89    /// # Examples
90    ///
91    /// ```
92    /// #![feature(duration_constants)]
93    /// use std::time::Duration;
94    ///
95    /// assert_eq!(Duration::SECOND, Duration::from_secs(1));
96    /// ```
97    #[unstable(feature = "duration_constants", issue = "57391")]
98    pub const SECOND: Duration = Duration::from_secs(1);
99
100    /// The duration of one millisecond.
101    ///
102    /// # Examples
103    ///
104    /// ```
105    /// #![feature(duration_constants)]
106    /// use std::time::Duration;
107    ///
108    /// assert_eq!(Duration::MILLISECOND, Duration::from_millis(1));
109    /// ```
110    #[unstable(feature = "duration_constants", issue = "57391")]
111    pub const MILLISECOND: Duration = Duration::from_millis(1);
112
113    /// The duration of one microsecond.
114    ///
115    /// # Examples
116    ///
117    /// ```
118    /// #![feature(duration_constants)]
119    /// use std::time::Duration;
120    ///
121    /// assert_eq!(Duration::MICROSECOND, Duration::from_micros(1));
122    /// ```
123    #[unstable(feature = "duration_constants", issue = "57391")]
124    pub const MICROSECOND: Duration = Duration::from_micros(1);
125
126    /// The duration of one nanosecond.
127    ///
128    /// # Examples
129    ///
130    /// ```
131    /// #![feature(duration_constants)]
132    /// use std::time::Duration;
133    ///
134    /// assert_eq!(Duration::NANOSECOND, Duration::from_nanos(1));
135    /// ```
136    #[unstable(feature = "duration_constants", issue = "57391")]
137    pub const NANOSECOND: Duration = Duration::from_nanos(1);
138
139    /// A duration of zero time.
140    ///
141    /// # Examples
142    ///
143    /// ```
144    /// use std::time::Duration;
145    ///
146    /// let duration = Duration::ZERO;
147    /// assert!(duration.is_zero());
148    /// assert_eq!(duration.as_nanos(), 0);
149    /// ```
150    #[stable(feature = "duration_zero", since = "1.53.0")]
151    pub const ZERO: Duration = Duration::from_nanos(0);
152
153    /// The maximum duration.
154    ///
155    /// May vary by platform as necessary. Must be able to contain the difference between
156    /// two instances of [`Instant`] or two instances of [`SystemTime`].
157    /// This constraint gives it a value of about 584,942,417,355 years in practice,
158    /// which is currently used on all platforms.
159    ///
160    /// # Examples
161    ///
162    /// ```
163    /// use std::time::Duration;
164    ///
165    /// assert_eq!(Duration::MAX, Duration::new(u64::MAX, 1_000_000_000 - 1));
166    /// ```
167    /// [`Instant`]: ../../std/time/struct.Instant.html
168    /// [`SystemTime`]: ../../std/time/struct.SystemTime.html
169    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
170    pub const MAX: Duration = Duration::new(u64::MAX, NANOS_PER_SEC - 1);
171
172    /// Creates a new `Duration` from the specified number of whole seconds and
173    /// additional nanoseconds.
174    ///
175    /// If the number of nanoseconds is greater than 1 billion (the number of
176    /// nanoseconds in a second), then it will carry over into the seconds provided.
177    ///
178    /// # Panics
179    ///
180    /// This constructor will panic if the carry from the nanoseconds overflows
181    /// the seconds counter.
182    ///
183    /// # Examples
184    ///
185    /// ```
186    /// use std::time::Duration;
187    ///
188    /// let five_seconds = Duration::new(5, 0);
189    /// ```
190    #[stable(feature = "duration", since = "1.3.0")]
191    #[inline]
192    #[must_use]
193    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
194    pub const fn new(secs: u64, nanos: u32) -> Duration {
195        if nanos < NANOS_PER_SEC {
196            // SAFETY: nanos < NANOS_PER_SEC, therefore nanos is within the valid range
197            Duration { secs, nanos: unsafe { Nanoseconds::new_unchecked(nanos) } }
198        } else {
199            let secs = secs
200                .checked_add((nanos / NANOS_PER_SEC) as u64)
201                .expect("overflow in Duration::new");
202            let nanos = nanos % NANOS_PER_SEC;
203            // SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
204            Duration { secs, nanos: unsafe { Nanoseconds::new_unchecked(nanos) } }
205        }
206    }
207
208    /// Creates a new `Duration` from the specified number of whole seconds.
209    ///
210    /// # Examples
211    ///
212    /// ```
213    /// use std::time::Duration;
214    ///
215    /// let duration = Duration::from_secs(5);
216    ///
217    /// assert_eq!(5, duration.as_secs());
218    /// assert_eq!(0, duration.subsec_nanos());
219    /// ```
220    #[stable(feature = "duration", since = "1.3.0")]
221    #[must_use]
222    #[inline]
223    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
224    pub const fn from_secs(secs: u64) -> Duration {
225        Duration { secs, nanos: Nanoseconds::ZERO }
226    }
227
228    /// Creates a new `Duration` from the specified number of milliseconds.
229    ///
230    /// # Examples
231    ///
232    /// ```
233    /// use std::time::Duration;
234    ///
235    /// let duration = Duration::from_millis(2_569);
236    ///
237    /// assert_eq!(2, duration.as_secs());
238    /// assert_eq!(569_000_000, duration.subsec_nanos());
239    /// ```
240    #[stable(feature = "duration", since = "1.3.0")]
241    #[must_use]
242    #[inline]
243    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
244    pub const fn from_millis(millis: u64) -> Duration {
245        let secs = millis / MILLIS_PER_SEC;
246        let subsec_millis = (millis % MILLIS_PER_SEC) as u32;
247        // SAFETY: (x % 1_000) * 1_000_000 < 1_000_000_000
248        //         => x % 1_000 < 1_000
249        let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_millis * NANOS_PER_MILLI) };
250
251        Duration { secs, nanos: subsec_nanos }
252    }
253
254    /// Creates a new `Duration` from the specified number of microseconds.
255    ///
256    /// # Examples
257    ///
258    /// ```
259    /// use std::time::Duration;
260    ///
261    /// let duration = Duration::from_micros(1_000_002);
262    ///
263    /// assert_eq!(1, duration.as_secs());
264    /// assert_eq!(2_000, duration.subsec_nanos());
265    /// ```
266    #[stable(feature = "duration_from_micros", since = "1.27.0")]
267    #[must_use]
268    #[inline]
269    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
270    pub const fn from_micros(micros: u64) -> Duration {
271        let secs = micros / MICROS_PER_SEC;
272        let subsec_micros = (micros % MICROS_PER_SEC) as u32;
273        // SAFETY: (x % 1_000_000) * 1_000 < 1_000_000_000
274        //         => x % 1_000_000 < 1_000_000
275        let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_micros * NANOS_PER_MICRO) };
276
277        Duration { secs, nanos: subsec_nanos }
278    }
279
280    /// Creates a new `Duration` from the specified number of nanoseconds.
281    ///
282    /// Note: Using this on the return value of `as_nanos()` might cause unexpected behavior:
283    /// `as_nanos()` returns a u128, and can return values that do not fit in u64, e.g. 585 years.
284    /// Instead, consider using the pattern `Duration::new(d.as_secs(), d.subsec_nanos())`
285    /// if you cannot copy/clone the Duration directly.
286    ///
287    /// # Examples
288    ///
289    /// ```
290    /// use std::time::Duration;
291    ///
292    /// let duration = Duration::from_nanos(1_000_000_123);
293    ///
294    /// assert_eq!(1, duration.as_secs());
295    /// assert_eq!(123, duration.subsec_nanos());
296    /// ```
297    #[stable(feature = "duration_extras", since = "1.27.0")]
298    #[must_use]
299    #[inline]
300    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
301    pub const fn from_nanos(nanos: u64) -> Duration {
302        const NANOS_PER_SEC: u64 = self::NANOS_PER_SEC as u64;
303        let secs = nanos / NANOS_PER_SEC;
304        let subsec_nanos = (nanos % NANOS_PER_SEC) as u32;
305        // SAFETY: x % 1_000_000_000 < 1_000_000_000
306        let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_nanos) };
307
308        Duration { secs, nanos: subsec_nanos }
309    }
310
311    /// Creates a new `Duration` from the specified number of nanoseconds.
312    ///
313    /// # Panics
314    ///
315    /// Panics if the given number of nanoseconds is greater than [`Duration::MAX`].
316    ///
317    /// # Examples
318    ///
319    /// ```
320    /// use std::time::Duration;
321    ///
322    /// let nanos = 10_u128.pow(24) + 321;
323    /// let duration = Duration::from_nanos_u128(nanos);
324    ///
325    /// assert_eq!(10_u64.pow(15), duration.as_secs());
326    /// assert_eq!(321, duration.subsec_nanos());
327    /// ```
328    #[stable(feature = "duration_from_nanos_u128", since = "1.93.0")]
329    #[rustc_const_stable(feature = "duration_from_nanos_u128", since = "1.93.0")]
330    #[must_use]
331    #[inline]
332    #[track_caller]
333    #[rustc_allow_const_fn_unstable(const_trait_impl, const_convert)] // for `u64::try_from`
334    pub const fn from_nanos_u128(nanos: u128) -> Duration {
335        const NANOS_PER_SEC: u128 = self::NANOS_PER_SEC as u128;
336        let Ok(secs) = u64::try_from(nanos / NANOS_PER_SEC) else {
337            panic!("overflow in `Duration::from_nanos_u128`");
338        };
339        let subsec_nanos = (nanos % NANOS_PER_SEC) as u32;
340        // SAFETY: x % 1_000_000_000 < 1_000_000_000 also, subsec_nanos >= 0 since u128 >=0 and u32 >=0
341        let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_nanos) };
342
343        Duration { secs: secs as u64, nanos: subsec_nanos }
344    }
345
346    /// Creates a new `Duration` from the specified number of weeks.
347    ///
348    /// # Panics
349    ///
350    /// Panics if the given number of weeks overflows the `Duration` size.
351    ///
352    /// # Examples
353    ///
354    /// ```
355    /// #![feature(duration_constructors)]
356    /// use std::time::Duration;
357    ///
358    /// let duration = Duration::from_weeks(4);
359    ///
360    /// assert_eq!(4 * 7 * 24 * 60 * 60, duration.as_secs());
361    /// assert_eq!(0, duration.subsec_nanos());
362    /// ```
363    #[unstable(feature = "duration_constructors", issue = "120301")]
364    #[must_use]
365    #[inline]
366    pub const fn from_weeks(weeks: u64) -> Duration {
367        if weeks > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR * HOURS_PER_DAY * DAYS_PER_WEEK) {
368            panic!("overflow in Duration::from_weeks");
369        }
370
371        Duration::from_secs(weeks * MINS_PER_HOUR * SECS_PER_MINUTE * HOURS_PER_DAY * DAYS_PER_WEEK)
372    }
373
374    /// Creates a new `Duration` from the specified number of days.
375    ///
376    /// # Panics
377    ///
378    /// Panics if the given number of days overflows the `Duration` size.
379    ///
380    /// # Examples
381    ///
382    /// ```
383    /// #![feature(duration_constructors)]
384    /// use std::time::Duration;
385    ///
386    /// let duration = Duration::from_days(7);
387    ///
388    /// assert_eq!(7 * 24 * 60 * 60, duration.as_secs());
389    /// assert_eq!(0, duration.subsec_nanos());
390    /// ```
391    #[unstable(feature = "duration_constructors", issue = "120301")]
392    #[must_use]
393    #[inline]
394    pub const fn from_days(days: u64) -> Duration {
395        if days > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR * HOURS_PER_DAY) {
396            panic!("overflow in Duration::from_days");
397        }
398
399        Duration::from_secs(days * MINS_PER_HOUR * SECS_PER_MINUTE * HOURS_PER_DAY)
400    }
401
402    /// Creates a new `Duration` from the specified number of hours.
403    ///
404    /// # Panics
405    ///
406    /// Panics if the given number of hours overflows the `Duration` size.
407    ///
408    /// # Examples
409    ///
410    /// ```
411    /// use std::time::Duration;
412    ///
413    /// let duration = Duration::from_hours(6);
414    ///
415    /// assert_eq!(6 * 60 * 60, duration.as_secs());
416    /// assert_eq!(0, duration.subsec_nanos());
417    /// ```
418    #[stable(feature = "duration_constructors_lite", since = "1.91.0")]
419    #[rustc_const_stable(feature = "duration_constructors_lite", since = "1.91.0")]
420    #[must_use]
421    #[inline]
422    pub const fn from_hours(hours: u64) -> Duration {
423        if hours > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR) {
424            panic!("overflow in Duration::from_hours");
425        }
426
427        Duration::from_secs(hours * MINS_PER_HOUR * SECS_PER_MINUTE)
428    }
429
430    /// Creates a new `Duration` from the specified number of minutes.
431    ///
432    /// # Panics
433    ///
434    /// Panics if the given number of minutes overflows the `Duration` size.
435    ///
436    /// # Examples
437    ///
438    /// ```
439    /// use std::time::Duration;
440    ///
441    /// let duration = Duration::from_mins(10);
442    ///
443    /// assert_eq!(10 * 60, duration.as_secs());
444    /// assert_eq!(0, duration.subsec_nanos());
445    /// ```
446    #[stable(feature = "duration_constructors_lite", since = "1.91.0")]
447    #[rustc_const_stable(feature = "duration_constructors_lite", since = "1.91.0")]
448    #[must_use]
449    #[inline]
450    pub const fn from_mins(mins: u64) -> Duration {
451        if mins > u64::MAX / SECS_PER_MINUTE {
452            panic!("overflow in Duration::from_mins");
453        }
454
455        Duration::from_secs(mins * SECS_PER_MINUTE)
456    }
457
458    /// Returns true if this `Duration` spans no time.
459    ///
460    /// # Examples
461    ///
462    /// ```
463    /// use std::time::Duration;
464    ///
465    /// assert!(Duration::ZERO.is_zero());
466    /// assert!(Duration::new(0, 0).is_zero());
467    /// assert!(Duration::from_nanos(0).is_zero());
468    /// assert!(Duration::from_secs(0).is_zero());
469    ///
470    /// assert!(!Duration::new(1, 1).is_zero());
471    /// assert!(!Duration::from_nanos(1).is_zero());
472    /// assert!(!Duration::from_secs(1).is_zero());
473    /// ```
474    #[must_use]
475    #[stable(feature = "duration_zero", since = "1.53.0")]
476    #[rustc_const_stable(feature = "duration_zero", since = "1.53.0")]
477    #[inline]
478    pub const fn is_zero(&self) -> bool {
479        self.secs == 0 && self.nanos.as_inner() == 0
480    }
481
482    /// Returns the number of _whole_ seconds contained by this `Duration`.
483    ///
484    /// The returned value does not include the fractional (nanosecond) part of the
485    /// duration, which can be obtained using [`subsec_nanos`].
486    ///
487    /// # Examples
488    ///
489    /// ```
490    /// use std::time::Duration;
491    ///
492    /// let duration = Duration::new(5, 730_023_852);
493    /// assert_eq!(duration.as_secs(), 5);
494    /// ```
495    ///
496    /// To determine the total number of seconds represented by the `Duration`
497    /// including the fractional part, use [`as_secs_f64`] or [`as_secs_f32`]
498    ///
499    /// [`as_secs_f64`]: Duration::as_secs_f64
500    /// [`as_secs_f32`]: Duration::as_secs_f32
501    /// [`subsec_nanos`]: Duration::subsec_nanos
502    #[stable(feature = "duration", since = "1.3.0")]
503    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
504    #[must_use]
505    #[inline]
506    pub const fn as_secs(&self) -> u64 {
507        self.secs
508    }
509
510    /// Returns the fractional part of this `Duration`, in whole milliseconds.
511    ///
512    /// This method does **not** return the length of the duration when
513    /// represented by milliseconds. The returned number always represents a
514    /// fractional portion of a second (i.e., it is less than one thousand).
515    ///
516    /// # Examples
517    ///
518    /// ```
519    /// use std::time::Duration;
520    ///
521    /// let duration = Duration::from_millis(5_432);
522    /// assert_eq!(duration.as_secs(), 5);
523    /// assert_eq!(duration.subsec_millis(), 432);
524    /// ```
525    #[stable(feature = "duration_extras", since = "1.27.0")]
526    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
527    #[must_use]
528    #[inline]
529    pub const fn subsec_millis(&self) -> u32 {
530        self.nanos.as_inner() / NANOS_PER_MILLI
531    }
532
533    /// Returns the fractional part of this `Duration`, in whole microseconds.
534    ///
535    /// This method does **not** return the length of the duration when
536    /// represented by microseconds. The returned number always represents a
537    /// fractional portion of a second (i.e., it is less than one million).
538    ///
539    /// # Examples
540    ///
541    /// ```
542    /// use std::time::Duration;
543    ///
544    /// let duration = Duration::from_micros(1_234_567);
545    /// assert_eq!(duration.as_secs(), 1);
546    /// assert_eq!(duration.subsec_micros(), 234_567);
547    /// ```
548    #[stable(feature = "duration_extras", since = "1.27.0")]
549    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
550    #[must_use]
551    #[inline]
552    pub const fn subsec_micros(&self) -> u32 {
553        self.nanos.as_inner() / NANOS_PER_MICRO
554    }
555
556    /// Returns the fractional part of this `Duration`, in nanoseconds.
557    ///
558    /// This method does **not** return the length of the duration when
559    /// represented by nanoseconds. The returned number always represents a
560    /// fractional portion of a second (i.e., it is less than one billion).
561    ///
562    /// # Examples
563    ///
564    /// ```
565    /// use std::time::Duration;
566    ///
567    /// let duration = Duration::from_millis(5_010);
568    /// assert_eq!(duration.as_secs(), 5);
569    /// assert_eq!(duration.subsec_nanos(), 10_000_000);
570    /// ```
571    #[stable(feature = "duration", since = "1.3.0")]
572    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
573    #[must_use]
574    #[inline]
575    pub const fn subsec_nanos(&self) -> u32 {
576        self.nanos.as_inner()
577    }
578
579    /// Returns the total number of whole milliseconds contained by this `Duration`.
580    ///
581    /// # Examples
582    ///
583    /// ```
584    /// use std::time::Duration;
585    ///
586    /// let duration = Duration::new(5, 730_023_852);
587    /// assert_eq!(duration.as_millis(), 5_730);
588    /// ```
589    #[stable(feature = "duration_as_u128", since = "1.33.0")]
590    #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
591    #[must_use]
592    #[inline]
593    pub const fn as_millis(&self) -> u128 {
594        self.secs as u128 * MILLIS_PER_SEC as u128
595            + (self.nanos.as_inner() / NANOS_PER_MILLI) as u128
596    }
597
598    /// Returns the total number of whole microseconds contained by this `Duration`.
599    ///
600    /// # Examples
601    ///
602    /// ```
603    /// use std::time::Duration;
604    ///
605    /// let duration = Duration::new(5, 730_023_852);
606    /// assert_eq!(duration.as_micros(), 5_730_023);
607    /// ```
608    #[stable(feature = "duration_as_u128", since = "1.33.0")]
609    #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
610    #[must_use]
611    #[inline]
612    pub const fn as_micros(&self) -> u128 {
613        self.secs as u128 * MICROS_PER_SEC as u128
614            + (self.nanos.as_inner() / NANOS_PER_MICRO) as u128
615    }
616
617    /// Returns the total number of nanoseconds contained by this `Duration`.
618    ///
619    /// # Examples
620    ///
621    /// ```
622    /// use std::time::Duration;
623    ///
624    /// let duration = Duration::new(5, 730_023_852);
625    /// assert_eq!(duration.as_nanos(), 5_730_023_852);
626    /// ```
627    #[stable(feature = "duration_as_u128", since = "1.33.0")]
628    #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
629    #[must_use]
630    #[inline]
631    pub const fn as_nanos(&self) -> u128 {
632        self.secs as u128 * NANOS_PER_SEC as u128 + self.nanos.as_inner() as u128
633    }
634
635    /// Computes the absolute difference between `self` and `other`.
636    ///
637    /// # Examples
638    ///
639    /// ```
640    /// use std::time::Duration;
641    ///
642    /// assert_eq!(Duration::new(100, 0).abs_diff(Duration::new(80, 0)), Duration::new(20, 0));
643    /// assert_eq!(Duration::new(100, 400_000_000).abs_diff(Duration::new(110, 0)), Duration::new(9, 600_000_000));
644    /// ```
645    #[stable(feature = "duration_abs_diff", since = "1.81.0")]
646    #[rustc_const_stable(feature = "duration_abs_diff", since = "1.81.0")]
647    #[must_use = "this returns the result of the operation, \
648                  without modifying the original"]
649    #[inline]
650    pub const fn abs_diff(self, other: Duration) -> Duration {
651        if let Some(res) = self.checked_sub(other) { res } else { other.checked_sub(self).unwrap() }
652    }
653
654    /// Checked `Duration` addition. Computes `self + other`, returning [`None`]
655    /// if overflow occurred.
656    ///
657    /// # Examples
658    ///
659    /// ```
660    /// use std::time::Duration;
661    ///
662    /// assert_eq!(Duration::new(0, 0).checked_add(Duration::new(0, 1)), Some(Duration::new(0, 1)));
663    /// assert_eq!(Duration::new(1, 0).checked_add(Duration::new(u64::MAX, 0)), None);
664    /// ```
665    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
666    #[must_use = "this returns the result of the operation, \
667                  without modifying the original"]
668    #[inline]
669    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
670    pub const fn checked_add(self, rhs: Duration) -> Option<Duration> {
671        if let Some(mut secs) = self.secs.checked_add(rhs.secs) {
672            let mut nanos = self.nanos.as_inner() + rhs.nanos.as_inner();
673            if nanos >= NANOS_PER_SEC {
674                nanos -= NANOS_PER_SEC;
675                let Some(new_secs) = secs.checked_add(1) else {
676                    return None;
677                };
678                secs = new_secs;
679            }
680            debug_assert!(nanos < NANOS_PER_SEC);
681            Some(Duration::new(secs, nanos))
682        } else {
683            None
684        }
685    }
686
687    /// Saturating `Duration` addition. Computes `self + other`, returning [`Duration::MAX`]
688    /// if overflow occurred.
689    ///
690    /// # Examples
691    ///
692    /// ```
693    /// use std::time::Duration;
694    ///
695    /// assert_eq!(Duration::new(0, 0).saturating_add(Duration::new(0, 1)), Duration::new(0, 1));
696    /// assert_eq!(Duration::new(1, 0).saturating_add(Duration::new(u64::MAX, 0)), Duration::MAX);
697    /// ```
698    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
699    #[must_use = "this returns the result of the operation, \
700                  without modifying the original"]
701    #[inline]
702    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
703    pub const fn saturating_add(self, rhs: Duration) -> Duration {
704        match self.checked_add(rhs) {
705            Some(res) => res,
706            None => Duration::MAX,
707        }
708    }
709
710    /// Checked `Duration` subtraction. Computes `self - other`, returning [`None`]
711    /// if the result would be negative or if overflow occurred.
712    ///
713    /// # Examples
714    ///
715    /// ```
716    /// use std::time::Duration;
717    ///
718    /// assert_eq!(Duration::new(0, 1).checked_sub(Duration::new(0, 0)), Some(Duration::new(0, 1)));
719    /// assert_eq!(Duration::new(0, 0).checked_sub(Duration::new(0, 1)), None);
720    /// ```
721    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
722    #[must_use = "this returns the result of the operation, \
723                  without modifying the original"]
724    #[inline]
725    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
726    pub const fn checked_sub(self, rhs: Duration) -> Option<Duration> {
727        if let Some(mut secs) = self.secs.checked_sub(rhs.secs) {
728            let nanos = if self.nanos.as_inner() >= rhs.nanos.as_inner() {
729                self.nanos.as_inner() - rhs.nanos.as_inner()
730            } else if let Some(sub_secs) = secs.checked_sub(1) {
731                secs = sub_secs;
732                self.nanos.as_inner() + NANOS_PER_SEC - rhs.nanos.as_inner()
733            } else {
734                return None;
735            };
736            debug_assert!(nanos < NANOS_PER_SEC);
737            Some(Duration::new(secs, nanos))
738        } else {
739            None
740        }
741    }
742
743    /// Saturating `Duration` subtraction. Computes `self - other`, returning [`Duration::ZERO`]
744    /// if the result would be negative or if overflow occurred.
745    ///
746    /// # Examples
747    ///
748    /// ```
749    /// use std::time::Duration;
750    ///
751    /// assert_eq!(Duration::new(0, 1).saturating_sub(Duration::new(0, 0)), Duration::new(0, 1));
752    /// assert_eq!(Duration::new(0, 0).saturating_sub(Duration::new(0, 1)), Duration::ZERO);
753    /// ```
754    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
755    #[must_use = "this returns the result of the operation, \
756                  without modifying the original"]
757    #[inline]
758    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
759    pub const fn saturating_sub(self, rhs: Duration) -> Duration {
760        match self.checked_sub(rhs) {
761            Some(res) => res,
762            None => Duration::ZERO,
763        }
764    }
765
766    /// Checked `Duration` multiplication. Computes `self * other`, returning
767    /// [`None`] if overflow occurred.
768    ///
769    /// # Examples
770    ///
771    /// ```
772    /// use std::time::Duration;
773    ///
774    /// assert_eq!(Duration::new(0, 500_000_001).checked_mul(2), Some(Duration::new(1, 2)));
775    /// assert_eq!(Duration::new(u64::MAX - 1, 0).checked_mul(2), None);
776    /// ```
777    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
778    #[must_use = "this returns the result of the operation, \
779                  without modifying the original"]
780    #[inline]
781    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
782    pub const fn checked_mul(self, rhs: u32) -> Option<Duration> {
783        // Multiply nanoseconds as u64, because it cannot overflow that way.
784        let total_nanos = self.nanos.as_inner() as u64 * rhs as u64;
785        let extra_secs = total_nanos / (NANOS_PER_SEC as u64);
786        let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32;
787        // FIXME(const-hack): use `and_then` once that is possible.
788        if let Some(s) = self.secs.checked_mul(rhs as u64) {
789            if let Some(secs) = s.checked_add(extra_secs) {
790                debug_assert!(nanos < NANOS_PER_SEC);
791                return Some(Duration::new(secs, nanos));
792            }
793        }
794        None
795    }
796
797    /// Saturating `Duration` multiplication. Computes `self * other`, returning
798    /// [`Duration::MAX`] if overflow occurred.
799    ///
800    /// # Examples
801    ///
802    /// ```
803    /// use std::time::Duration;
804    ///
805    /// assert_eq!(Duration::new(0, 500_000_001).saturating_mul(2), Duration::new(1, 2));
806    /// assert_eq!(Duration::new(u64::MAX - 1, 0).saturating_mul(2), Duration::MAX);
807    /// ```
808    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
809    #[must_use = "this returns the result of the operation, \
810                  without modifying the original"]
811    #[inline]
812    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
813    pub const fn saturating_mul(self, rhs: u32) -> Duration {
814        match self.checked_mul(rhs) {
815            Some(res) => res,
816            None => Duration::MAX,
817        }
818    }
819
820    /// Checked `Duration` division. Computes `self / other`, returning [`None`]
821    /// if `other == 0`.
822    ///
823    /// # Examples
824    ///
825    /// ```
826    /// use std::time::Duration;
827    ///
828    /// assert_eq!(Duration::new(2, 0).checked_div(2), Some(Duration::new(1, 0)));
829    /// assert_eq!(Duration::new(1, 0).checked_div(2), Some(Duration::new(0, 500_000_000)));
830    /// assert_eq!(Duration::new(2, 0).checked_div(0), None);
831    /// ```
832    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
833    #[must_use = "this returns the result of the operation, \
834                  without modifying the original"]
835    #[inline]
836    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
837    pub const fn checked_div(self, rhs: u32) -> Option<Duration> {
838        if rhs != 0 {
839            let (secs, extra_secs) = (self.secs / (rhs as u64), self.secs % (rhs as u64));
840            let (mut nanos, extra_nanos) =
841                (self.nanos.as_inner() / rhs, self.nanos.as_inner() % rhs);
842            nanos +=
843                ((extra_secs * (NANOS_PER_SEC as u64) + extra_nanos as u64) / (rhs as u64)) as u32;
844            debug_assert!(nanos < NANOS_PER_SEC);
845            Some(Duration::new(secs, nanos))
846        } else {
847            None
848        }
849    }
850
851    /// Returns the number of seconds contained by this `Duration` as `f64`.
852    ///
853    /// The returned value includes the fractional (nanosecond) part of the duration.
854    ///
855    /// # Examples
856    /// ```
857    /// use std::time::Duration;
858    ///
859    /// let dur = Duration::new(2, 700_000_000);
860    /// assert_eq!(dur.as_secs_f64(), 2.7);
861    /// ```
862    #[stable(feature = "duration_float", since = "1.38.0")]
863    #[must_use]
864    #[inline]
865    #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
866    pub const fn as_secs_f64(&self) -> f64 {
867        (self.secs as f64) + (self.nanos.as_inner() as f64) / (NANOS_PER_SEC as f64)
868    }
869
870    /// Returns the number of seconds contained by this `Duration` as `f32`.
871    ///
872    /// The returned value includes the fractional (nanosecond) part of the duration.
873    ///
874    /// # Examples
875    /// ```
876    /// use std::time::Duration;
877    ///
878    /// let dur = Duration::new(2, 700_000_000);
879    /// assert_eq!(dur.as_secs_f32(), 2.7);
880    /// ```
881    #[stable(feature = "duration_float", since = "1.38.0")]
882    #[must_use]
883    #[inline]
884    #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
885    pub const fn as_secs_f32(&self) -> f32 {
886        (self.secs as f32) + (self.nanos.as_inner() as f32) / (NANOS_PER_SEC as f32)
887    }
888
889    /// Returns the number of milliseconds contained by this `Duration` as `f64`.
890    ///
891    /// The returned value includes the fractional (nanosecond) part of the duration.
892    ///
893    /// # Examples
894    /// ```
895    /// #![feature(duration_millis_float)]
896    /// use std::time::Duration;
897    ///
898    /// let dur = Duration::new(2, 345_678_000);
899    /// assert_eq!(dur.as_millis_f64(), 2_345.678);
900    /// ```
901    #[unstable(feature = "duration_millis_float", issue = "122451")]
902    #[must_use]
903    #[inline]
904    pub const fn as_millis_f64(&self) -> f64 {
905        (self.secs as f64) * (MILLIS_PER_SEC as f64)
906            + (self.nanos.as_inner() as f64) / (NANOS_PER_MILLI as f64)
907    }
908
909    /// Returns the number of milliseconds contained by this `Duration` as `f32`.
910    ///
911    /// The returned value includes the fractional (nanosecond) part of the duration.
912    ///
913    /// # Examples
914    /// ```
915    /// #![feature(duration_millis_float)]
916    /// use std::time::Duration;
917    ///
918    /// let dur = Duration::new(2, 345_678_000);
919    /// assert_eq!(dur.as_millis_f32(), 2_345.678);
920    /// ```
921    #[unstable(feature = "duration_millis_float", issue = "122451")]
922    #[must_use]
923    #[inline]
924    pub const fn as_millis_f32(&self) -> f32 {
925        (self.secs as f32) * (MILLIS_PER_SEC as f32)
926            + (self.nanos.as_inner() as f32) / (NANOS_PER_MILLI as f32)
927    }
928
929    /// Creates a new `Duration` from the specified number of seconds represented
930    /// as `f64`.
931    ///
932    /// # Panics
933    /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite.
934    ///
935    /// # Examples
936    /// ```
937    /// use std::time::Duration;
938    ///
939    /// let res = Duration::from_secs_f64(0.0);
940    /// assert_eq!(res, Duration::new(0, 0));
941    /// let res = Duration::from_secs_f64(1e-20);
942    /// assert_eq!(res, Duration::new(0, 0));
943    /// let res = Duration::from_secs_f64(4.2e-7);
944    /// assert_eq!(res, Duration::new(0, 420));
945    /// let res = Duration::from_secs_f64(2.7);
946    /// assert_eq!(res, Duration::new(2, 700_000_000));
947    /// let res = Duration::from_secs_f64(3e10);
948    /// assert_eq!(res, Duration::new(30_000_000_000, 0));
949    /// // subnormal float
950    /// let res = Duration::from_secs_f64(f64::from_bits(1));
951    /// assert_eq!(res, Duration::new(0, 0));
952    /// // conversion uses rounding
953    /// let res = Duration::from_secs_f64(0.999e-9);
954    /// assert_eq!(res, Duration::new(0, 1));
955    /// ```
956    #[stable(feature = "duration_float", since = "1.38.0")]
957    #[must_use]
958    #[inline]
959    pub fn from_secs_f64(secs: f64) -> Duration {
960        match Duration::try_from_secs_f64(secs) {
961            Ok(v) => v,
962            Err(e) => panic!("{e}"),
963        }
964    }
965
966    /// Creates a new `Duration` from the specified number of seconds represented
967    /// as `f32`.
968    ///
969    /// # Panics
970    /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite.
971    ///
972    /// # Examples
973    /// ```
974    /// use std::time::Duration;
975    ///
976    /// let res = Duration::from_secs_f32(0.0);
977    /// assert_eq!(res, Duration::new(0, 0));
978    /// let res = Duration::from_secs_f32(1e-20);
979    /// assert_eq!(res, Duration::new(0, 0));
980    /// let res = Duration::from_secs_f32(4.2e-7);
981    /// assert_eq!(res, Duration::new(0, 420));
982    /// let res = Duration::from_secs_f32(2.7);
983    /// assert_eq!(res, Duration::new(2, 700_000_048));
984    /// let res = Duration::from_secs_f32(3e10);
985    /// assert_eq!(res, Duration::new(30_000_001_024, 0));
986    /// // subnormal float
987    /// let res = Duration::from_secs_f32(f32::from_bits(1));
988    /// assert_eq!(res, Duration::new(0, 0));
989    /// // conversion uses rounding
990    /// let res = Duration::from_secs_f32(0.999e-9);
991    /// assert_eq!(res, Duration::new(0, 1));
992    /// ```
993    #[stable(feature = "duration_float", since = "1.38.0")]
994    #[must_use]
995    #[inline]
996    pub fn from_secs_f32(secs: f32) -> Duration {
997        match Duration::try_from_secs_f32(secs) {
998            Ok(v) => v,
999            Err(e) => panic!("{e}"),
1000        }
1001    }
1002
1003    /// Multiplies `Duration` by `f64`.
1004    ///
1005    /// # Panics
1006    /// This method will panic if result is negative, overflows `Duration` or not finite.
1007    ///
1008    /// # Examples
1009    /// ```
1010    /// use std::time::Duration;
1011    ///
1012    /// let dur = Duration::new(2, 700_000_000);
1013    /// assert_eq!(dur.mul_f64(3.14), Duration::new(8, 478_000_000));
1014    /// assert_eq!(dur.mul_f64(3.14e5), Duration::new(847_800, 0));
1015    /// ```
1016    #[stable(feature = "duration_float", since = "1.38.0")]
1017    #[must_use = "this returns the result of the operation, \
1018                  without modifying the original"]
1019    #[inline]
1020    pub fn mul_f64(self, rhs: f64) -> Duration {
1021        Duration::from_secs_f64(rhs * self.as_secs_f64())
1022    }
1023
1024    /// Multiplies `Duration` by `f32`.
1025    ///
1026    /// # Panics
1027    /// This method will panic if result is negative, overflows `Duration` or not finite.
1028    ///
1029    /// # Examples
1030    /// ```
1031    /// use std::time::Duration;
1032    ///
1033    /// let dur = Duration::new(2, 700_000_000);
1034    /// assert_eq!(dur.mul_f32(3.14), Duration::new(8, 478_000_641));
1035    /// assert_eq!(dur.mul_f32(3.14e5), Duration::new(847_800, 0));
1036    /// ```
1037    #[stable(feature = "duration_float", since = "1.38.0")]
1038    #[must_use = "this returns the result of the operation, \
1039                  without modifying the original"]
1040    #[inline]
1041    pub fn mul_f32(self, rhs: f32) -> Duration {
1042        Duration::from_secs_f32(rhs * self.as_secs_f32())
1043    }
1044
1045    /// Divides `Duration` by `f64`.
1046    ///
1047    /// # Panics
1048    /// This method will panic if result is negative, overflows `Duration` or not finite.
1049    ///
1050    /// # Examples
1051    /// ```
1052    /// use std::time::Duration;
1053    ///
1054    /// let dur = Duration::new(2, 700_000_000);
1055    /// assert_eq!(dur.div_f64(3.14), Duration::new(0, 859_872_611));
1056    /// assert_eq!(dur.div_f64(3.14e5), Duration::new(0, 8_599));
1057    /// ```
1058    #[stable(feature = "duration_float", since = "1.38.0")]
1059    #[must_use = "this returns the result of the operation, \
1060                  without modifying the original"]
1061    #[inline]
1062    pub fn div_f64(self, rhs: f64) -> Duration {
1063        Duration::from_secs_f64(self.as_secs_f64() / rhs)
1064    }
1065
1066    /// Divides `Duration` by `f32`.
1067    ///
1068    /// # Panics
1069    /// This method will panic if result is negative, overflows `Duration` or not finite.
1070    ///
1071    /// # Examples
1072    /// ```
1073    /// use std::time::Duration;
1074    ///
1075    /// let dur = Duration::new(2, 700_000_000);
1076    /// // note that due to rounding errors result is slightly
1077    /// // different from 0.859_872_611
1078    /// assert_eq!(dur.div_f32(3.14), Duration::new(0, 859_872_580));
1079    /// assert_eq!(dur.div_f32(3.14e5), Duration::new(0, 8_599));
1080    /// ```
1081    #[stable(feature = "duration_float", since = "1.38.0")]
1082    #[must_use = "this returns the result of the operation, \
1083                  without modifying the original"]
1084    #[inline]
1085    pub fn div_f32(self, rhs: f32) -> Duration {
1086        Duration::from_secs_f32(self.as_secs_f32() / rhs)
1087    }
1088
1089    /// Divides `Duration` by `Duration` and returns `f64`.
1090    ///
1091    /// # Examples
1092    /// ```
1093    /// use std::time::Duration;
1094    ///
1095    /// let dur1 = Duration::new(2, 700_000_000);
1096    /// let dur2 = Duration::new(5, 400_000_000);
1097    /// assert_eq!(dur1.div_duration_f64(dur2), 0.5);
1098    /// ```
1099    #[stable(feature = "div_duration", since = "1.80.0")]
1100    #[must_use = "this returns the result of the operation, \
1101                  without modifying the original"]
1102    #[inline]
1103    #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
1104    pub const fn div_duration_f64(self, rhs: Duration) -> f64 {
1105        let self_nanos =
1106            (self.secs as f64) * (NANOS_PER_SEC as f64) + (self.nanos.as_inner() as f64);
1107        let rhs_nanos = (rhs.secs as f64) * (NANOS_PER_SEC as f64) + (rhs.nanos.as_inner() as f64);
1108        self_nanos / rhs_nanos
1109    }
1110
1111    /// Divides `Duration` by `Duration` and returns `f32`.
1112    ///
1113    /// # Examples
1114    /// ```
1115    /// use std::time::Duration;
1116    ///
1117    /// let dur1 = Duration::new(2, 700_000_000);
1118    /// let dur2 = Duration::new(5, 400_000_000);
1119    /// assert_eq!(dur1.div_duration_f32(dur2), 0.5);
1120    /// ```
1121    #[stable(feature = "div_duration", since = "1.80.0")]
1122    #[must_use = "this returns the result of the operation, \
1123                  without modifying the original"]
1124    #[inline]
1125    #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
1126    pub const fn div_duration_f32(self, rhs: Duration) -> f32 {
1127        let self_nanos =
1128            (self.secs as f32) * (NANOS_PER_SEC as f32) + (self.nanos.as_inner() as f32);
1129        let rhs_nanos = (rhs.secs as f32) * (NANOS_PER_SEC as f32) + (rhs.nanos.as_inner() as f32);
1130        self_nanos / rhs_nanos
1131    }
1132
1133    /// Divides `Duration` by `Duration` and returns `u128`, rounding the result towards zero.
1134    ///
1135    /// # Examples
1136    /// ```
1137    /// #![feature(duration_integer_division)]
1138    /// use std::time::Duration;
1139    ///
1140    /// let dur = Duration::new(2, 0);
1141    /// assert_eq!(dur.div_duration_floor(Duration::new(1, 000_000_001)), 1);
1142    /// assert_eq!(dur.div_duration_floor(Duration::new(1, 000_000_000)), 2);
1143    /// assert_eq!(dur.div_duration_floor(Duration::new(0, 999_999_999)), 2);
1144    /// ```
1145    #[unstable(feature = "duration_integer_division", issue = "149573")]
1146    #[must_use = "this returns the result of the operation, \
1147                  without modifying the original"]
1148    #[inline]
1149    pub const fn div_duration_floor(self, rhs: Duration) -> u128 {
1150        self.as_nanos().div_floor(rhs.as_nanos())
1151    }
1152
1153    /// Divides `Duration` by `Duration` and returns `u128`, rounding the result towards positive infinity.
1154    ///
1155    /// # Examples
1156    /// ```
1157    /// #![feature(duration_integer_division)]
1158    /// use std::time::Duration;
1159    ///
1160    /// let dur = Duration::new(2, 0);
1161    /// assert_eq!(dur.div_duration_ceil(Duration::new(1, 000_000_001)), 2);
1162    /// assert_eq!(dur.div_duration_ceil(Duration::new(1, 000_000_000)), 2);
1163    /// assert_eq!(dur.div_duration_ceil(Duration::new(0, 999_999_999)), 3);
1164    /// ```
1165    #[unstable(feature = "duration_integer_division", issue = "149573")]
1166    #[must_use = "this returns the result of the operation, \
1167                  without modifying the original"]
1168    #[inline]
1169    pub const fn div_duration_ceil(self, rhs: Duration) -> u128 {
1170        self.as_nanos().div_ceil(rhs.as_nanos())
1171    }
1172}
1173
1174#[stable(feature = "duration", since = "1.3.0")]
1175#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1176impl const Add for Duration {
1177    type Output = Duration;
1178
1179    #[inline]
1180    fn add(self, rhs: Duration) -> Duration {
1181        self.checked_add(rhs).expect("overflow when adding durations")
1182    }
1183}
1184
1185#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1186#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1187impl const AddAssign for Duration {
1188    #[inline]
1189    fn add_assign(&mut self, rhs: Duration) {
1190        *self = *self + rhs;
1191    }
1192}
1193
1194#[stable(feature = "duration", since = "1.3.0")]
1195#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1196impl const Sub for Duration {
1197    type Output = Duration;
1198
1199    #[inline]
1200    fn sub(self, rhs: Duration) -> Duration {
1201        self.checked_sub(rhs).expect("overflow when subtracting durations")
1202    }
1203}
1204
1205#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1206#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1207impl const SubAssign for Duration {
1208    #[inline]
1209    fn sub_assign(&mut self, rhs: Duration) {
1210        *self = *self - rhs;
1211    }
1212}
1213
1214#[stable(feature = "duration", since = "1.3.0")]
1215#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1216impl const Mul<u32> for Duration {
1217    type Output = Duration;
1218
1219    #[inline]
1220    fn mul(self, rhs: u32) -> Duration {
1221        self.checked_mul(rhs).expect("overflow when multiplying duration by scalar")
1222    }
1223}
1224
1225#[stable(feature = "symmetric_u32_duration_mul", since = "1.31.0")]
1226#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1227impl const Mul<Duration> for u32 {
1228    type Output = Duration;
1229
1230    #[inline]
1231    fn mul(self, rhs: Duration) -> Duration {
1232        rhs * self
1233    }
1234}
1235
1236#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1237#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1238impl const MulAssign<u32> for Duration {
1239    #[inline]
1240    fn mul_assign(&mut self, rhs: u32) {
1241        *self = *self * rhs;
1242    }
1243}
1244
1245#[stable(feature = "duration", since = "1.3.0")]
1246#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1247impl const Div<u32> for Duration {
1248    type Output = Duration;
1249
1250    #[inline]
1251    #[track_caller]
1252    fn div(self, rhs: u32) -> Duration {
1253        self.checked_div(rhs).expect("divide by zero error when dividing duration by scalar")
1254    }
1255}
1256
1257#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1258#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1259impl const DivAssign<u32> for Duration {
1260    #[inline]
1261    #[track_caller]
1262    fn div_assign(&mut self, rhs: u32) {
1263        *self = *self / rhs;
1264    }
1265}
1266
1267macro_rules! sum_durations {
1268    ($iter:expr) => {{
1269        let mut total_secs: u64 = 0;
1270        let mut total_nanos: u64 = 0;
1271
1272        for entry in $iter {
1273            total_secs =
1274                total_secs.checked_add(entry.secs).expect("overflow in iter::sum over durations");
1275            total_nanos = match total_nanos.checked_add(entry.nanos.as_inner() as u64) {
1276                Some(n) => n,
1277                None => {
1278                    total_secs = total_secs
1279                        .checked_add(total_nanos / NANOS_PER_SEC as u64)
1280                        .expect("overflow in iter::sum over durations");
1281                    (total_nanos % NANOS_PER_SEC as u64) + entry.nanos.as_inner() as u64
1282                }
1283            };
1284        }
1285        total_secs = total_secs
1286            .checked_add(total_nanos / NANOS_PER_SEC as u64)
1287            .expect("overflow in iter::sum over durations");
1288        total_nanos = total_nanos % NANOS_PER_SEC as u64;
1289        Duration::new(total_secs, total_nanos as u32)
1290    }};
1291}
1292
1293#[stable(feature = "duration_sum", since = "1.16.0")]
1294impl Sum for Duration {
1295    fn sum<I: Iterator<Item = Duration>>(iter: I) -> Duration {
1296        sum_durations!(iter)
1297    }
1298}
1299
1300#[stable(feature = "duration_sum", since = "1.16.0")]
1301impl<'a> Sum<&'a Duration> for Duration {
1302    fn sum<I: Iterator<Item = &'a Duration>>(iter: I) -> Duration {
1303        sum_durations!(iter)
1304    }
1305}
1306
1307#[stable(feature = "duration_debug_impl", since = "1.27.0")]
1308impl fmt::Debug for Duration {
1309    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1310        /// Formats a floating point number in decimal notation.
1311        ///
1312        /// The number is given as the `integer_part` and a fractional part.
1313        /// The value of the fractional part is `fractional_part / divisor`. So
1314        /// `integer_part` = 3, `fractional_part` = 12 and `divisor` = 100
1315        /// represents the number `3.012`. Trailing zeros are omitted.
1316        ///
1317        /// `divisor` must not be above 100_000_000. It also should be a power
1318        /// of 10, everything else doesn't make sense. `fractional_part` has
1319        /// to be less than `10 * divisor`!
1320        ///
1321        /// A prefix and postfix may be added. The whole thing is padded
1322        /// to the formatter's `width`, if specified.
1323        fn fmt_decimal(
1324            f: &mut fmt::Formatter<'_>,
1325            integer_part: u64,
1326            mut fractional_part: u32,
1327            mut divisor: u32,
1328            prefix: &str,
1329            postfix: &str,
1330        ) -> fmt::Result {
1331            // Encode the fractional part into a temporary buffer. The buffer
1332            // only need to hold 9 elements, because `fractional_part` has to
1333            // be smaller than 10^9. The buffer is prefilled with '0' digits
1334            // to simplify the code below.
1335            let mut buf = [b'0'; 9];
1336
1337            // The next digit is written at this position
1338            let mut pos = 0;
1339
1340            // We keep writing digits into the buffer while there are non-zero
1341            // digits left and we haven't written enough digits yet.
1342            while fractional_part > 0 && pos < f.precision().unwrap_or(9) {
1343                // Write new digit into the buffer
1344                buf[pos] = b'0' + (fractional_part / divisor) as u8;
1345
1346                fractional_part %= divisor;
1347                divisor /= 10;
1348                pos += 1;
1349            }
1350
1351            // If a precision < 9 was specified, there may be some non-zero
1352            // digits left that weren't written into the buffer. In that case we
1353            // need to perform rounding to match the semantics of printing
1354            // normal floating point numbers. However, we only need to do work
1355            // when rounding up. This happens if the first digit of the
1356            // remaining ones is >= 5. When the first digit is exactly 5, rounding
1357            // follows IEEE-754 round-ties-to-even semantics: we only round up
1358            // if the last written digit is odd.
1359            let integer_part = if fractional_part > 0 && fractional_part >= divisor * 5 {
1360                // For ties (fractional_part == divisor * 5), only round up if last digit is odd
1361                let is_tie = fractional_part == divisor * 5;
1362                let last_digit_is_odd = if pos > 0 {
1363                    (buf[pos - 1] - b'0') % 2 == 1
1364                } else {
1365                    // No fractional digits - check the integer part
1366                    (integer_part % 2) == 1
1367                };
1368
1369                if is_tie && !last_digit_is_odd {
1370                    Some(integer_part)
1371                } else {
1372                    // Round up the number contained in the buffer. We go through
1373                    // the buffer backwards and keep track of the carry.
1374                    let mut rev_pos = pos;
1375                    let mut carry = true;
1376                    while carry && rev_pos > 0 {
1377                        rev_pos -= 1;
1378
1379                        // If the digit in the buffer is not '9', we just need to
1380                        // increment it and can stop then (since we don't have a
1381                        // carry anymore). Otherwise, we set it to '0' (overflow)
1382                        // and continue.
1383                        if buf[rev_pos] < b'9' {
1384                            buf[rev_pos] += 1;
1385                            carry = false;
1386                        } else {
1387                            buf[rev_pos] = b'0';
1388                        }
1389                    }
1390
1391                    // If we still have the carry bit set, that means that we set
1392                    // the whole buffer to '0's and need to increment the integer
1393                    // part.
1394                    if carry {
1395                        // If `integer_part == u64::MAX` and precision < 9, any
1396                        // carry of the overflow during rounding of the
1397                        // `fractional_part` into the `integer_part` will cause the
1398                        // `integer_part` itself to overflow. Avoid this by using an
1399                        // `Option<u64>`, with `None` representing `u64::MAX + 1`.
1400                        integer_part.checked_add(1)
1401                    } else {
1402                        Some(integer_part)
1403                    }
1404                }
1405            } else {
1406                Some(integer_part)
1407            };
1408
1409            // Determine the end of the buffer: if precision is set, we just
1410            // use as many digits from the buffer (capped to 9). If it isn't
1411            // set, we only use all digits up to the last non-zero one.
1412            let end = f.precision().map(|p| crate::cmp::min(p, 9)).unwrap_or(pos);
1413
1414            // This closure emits the formatted duration without emitting any
1415            // padding (padding is calculated below).
1416            let emit_without_padding = |f: &mut fmt::Formatter<'_>| {
1417                if let Some(integer_part) = integer_part {
1418                    write!(f, "{}{}", prefix, integer_part)?;
1419                } else {
1420                    // u64::MAX + 1 == 18446744073709551616
1421                    write!(f, "{}18446744073709551616", prefix)?;
1422                }
1423
1424                // Write the decimal point and the fractional part (if any).
1425                if end > 0 {
1426                    // SAFETY: We are only writing ASCII digits into the buffer and
1427                    // it was initialized with '0's, so it contains valid UTF8.
1428                    let s = unsafe { crate::str::from_utf8_unchecked(&buf[..end]) };
1429
1430                    // If the user request a precision > 9, we pad '0's at the end.
1431                    let w = f.precision().unwrap_or(pos);
1432                    write!(f, ".{:0<width$}", s, width = w)?;
1433                }
1434
1435                write!(f, "{}", postfix)
1436            };
1437
1438            match f.width() {
1439                None => {
1440                    // No `width` specified. There's no need to calculate the
1441                    // length of the output in this case, just emit it.
1442                    emit_without_padding(f)
1443                }
1444                Some(requested_w) => {
1445                    // A `width` was specified. Calculate the actual width of
1446                    // the output in order to calculate the required padding.
1447                    // It consists of 4 parts:
1448                    // 1. The prefix: is either "+" or "", so we can just use len().
1449                    // 2. The postfix: can be "µs" so we have to count UTF8 characters.
1450                    let mut actual_w = prefix.len() + postfix.chars().count();
1451                    // 3. The integer part:
1452                    if let Some(integer_part) = integer_part {
1453                        if let Some(log) = integer_part.checked_ilog10() {
1454                            // integer_part is > 0, so has length log10(x)+1
1455                            actual_w += 1 + log as usize;
1456                        } else {
1457                            // integer_part is 0, so has length 1.
1458                            actual_w += 1;
1459                        }
1460                    } else {
1461                        // integer_part is u64::MAX + 1, so has length 20
1462                        actual_w += 20;
1463                    }
1464                    // 4. The fractional part (if any):
1465                    if end > 0 {
1466                        let frac_part_w = f.precision().unwrap_or(pos);
1467                        actual_w += 1 + frac_part_w;
1468                    }
1469
1470                    if requested_w <= actual_w {
1471                        // Output is already longer than `width`, so don't pad.
1472                        emit_without_padding(f)
1473                    } else {
1474                        // We need to add padding. Use the `Formatter::padding` helper function.
1475                        let default_align = fmt::Alignment::Left;
1476                        let post_padding =
1477                            f.padding((requested_w - actual_w) as u16, default_align)?;
1478                        emit_without_padding(f)?;
1479                        post_padding.write(f)
1480                    }
1481                }
1482            }
1483        }
1484
1485        // Print leading '+' sign if requested
1486        let prefix = if f.sign_plus() { "+" } else { "" };
1487
1488        if self.secs > 0 {
1489            fmt_decimal(f, self.secs, self.nanos.as_inner(), NANOS_PER_SEC / 10, prefix, "s")
1490        } else if self.nanos.as_inner() >= NANOS_PER_MILLI {
1491            fmt_decimal(
1492                f,
1493                (self.nanos.as_inner() / NANOS_PER_MILLI) as u64,
1494                self.nanos.as_inner() % NANOS_PER_MILLI,
1495                NANOS_PER_MILLI / 10,
1496                prefix,
1497                "ms",
1498            )
1499        } else if self.nanos.as_inner() >= NANOS_PER_MICRO {
1500            fmt_decimal(
1501                f,
1502                (self.nanos.as_inner() / NANOS_PER_MICRO) as u64,
1503                self.nanos.as_inner() % NANOS_PER_MICRO,
1504                NANOS_PER_MICRO / 10,
1505                prefix,
1506                "µs",
1507            )
1508        } else {
1509            fmt_decimal(f, self.nanos.as_inner() as u64, 0, 1, prefix, "ns")
1510        }
1511    }
1512}
1513
1514/// An error which can be returned when converting a floating-point value of seconds
1515/// into a [`Duration`].
1516///
1517/// This error is used as the error type for [`Duration::try_from_secs_f32`] and
1518/// [`Duration::try_from_secs_f64`].
1519///
1520/// # Example
1521///
1522/// ```
1523/// use std::time::Duration;
1524///
1525/// if let Err(e) = Duration::try_from_secs_f32(-1.0) {
1526///     println!("Failed conversion to Duration: {e}");
1527/// }
1528/// ```
1529#[derive(Debug, Clone, PartialEq, Eq)]
1530#[stable(feature = "duration_checked_float", since = "1.66.0")]
1531pub struct TryFromFloatSecsError {
1532    kind: TryFromFloatSecsErrorKind,
1533}
1534
1535#[stable(feature = "duration_checked_float", since = "1.66.0")]
1536impl fmt::Display for TryFromFloatSecsError {
1537    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1538        match self.kind {
1539            TryFromFloatSecsErrorKind::Negative => {
1540                "cannot convert float seconds to Duration: value is negative"
1541            }
1542            TryFromFloatSecsErrorKind::OverflowOrNan => {
1543                "cannot convert float seconds to Duration: value is either too big or NaN"
1544            }
1545        }
1546        .fmt(f)
1547    }
1548}
1549
1550#[derive(Debug, Clone, PartialEq, Eq)]
1551enum TryFromFloatSecsErrorKind {
1552    // Value is negative.
1553    Negative,
1554    // Value is either too big to be represented as `Duration` or `NaN`.
1555    OverflowOrNan,
1556}
1557
1558macro_rules! try_from_secs {
1559    (
1560        secs = $secs: expr,
1561        mantissa_bits = $mant_bits: literal,
1562        exponent_bits = $exp_bits: literal,
1563        offset = $offset: literal,
1564        bits_ty = $bits_ty:ty,
1565        double_ty = $double_ty:ty,
1566    ) => {{
1567        const MIN_EXP: i16 = 1 - (1i16 << $exp_bits) / 2;
1568        const MANT_MASK: $bits_ty = (1 << $mant_bits) - 1;
1569        const EXP_MASK: $bits_ty = (1 << $exp_bits) - 1;
1570
1571        if $secs < 0.0 {
1572            return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::Negative });
1573        }
1574
1575        let bits = $secs.to_bits();
1576        let mant = (bits & MANT_MASK) | (MANT_MASK + 1);
1577        let exp = ((bits >> $mant_bits) & EXP_MASK) as i16 + MIN_EXP;
1578
1579        let (secs, nanos) = if exp < -31 {
1580            // the input represents less than 1ns and can not be rounded to it
1581            (0u64, 0u32)
1582        } else if exp < 0 {
1583            // the input is less than 1 second
1584            let t = <$double_ty>::from(mant) << ($offset + exp);
1585            let nanos_offset = $mant_bits + $offset;
1586            let nanos_tmp = u128::from(NANOS_PER_SEC) * u128::from(t);
1587            let nanos = (nanos_tmp >> nanos_offset) as u32;
1588
1589            let rem_mask = (1 << nanos_offset) - 1;
1590            let rem_msb_mask = 1 << (nanos_offset - 1);
1591            let rem = nanos_tmp & rem_mask;
1592            let is_tie = rem == rem_msb_mask;
1593            let is_even = (nanos & 1) == 0;
1594            let rem_msb = nanos_tmp & rem_msb_mask == 0;
1595            let add_ns = !(rem_msb || (is_even && is_tie));
1596
1597            // f32 does not have enough precision to trigger the second branch
1598            // since it can not represent numbers between 0.999_999_940_395 and 1.0.
1599            let nanos = nanos + add_ns as u32;
1600            if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { (0, nanos) } else { (1, 0) }
1601        } else if exp < $mant_bits {
1602            let secs = u64::from(mant >> ($mant_bits - exp));
1603            let t = <$double_ty>::from((mant << exp) & MANT_MASK);
1604            let nanos_offset = $mant_bits;
1605            let nanos_tmp = <$double_ty>::from(NANOS_PER_SEC) * t;
1606            let nanos = (nanos_tmp >> nanos_offset) as u32;
1607
1608            let rem_mask = (1 << nanos_offset) - 1;
1609            let rem_msb_mask = 1 << (nanos_offset - 1);
1610            let rem = nanos_tmp & rem_mask;
1611            let is_tie = rem == rem_msb_mask;
1612            let is_even = (nanos & 1) == 0;
1613            let rem_msb = nanos_tmp & rem_msb_mask == 0;
1614            let add_ns = !(rem_msb || (is_even && is_tie));
1615
1616            // f32 does not have enough precision to trigger the second branch.
1617            // For example, it can not represent numbers between 1.999_999_880...
1618            // and 2.0. Bigger values result in even smaller precision of the
1619            // fractional part.
1620            let nanos = nanos + add_ns as u32;
1621            if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) {
1622                (secs, nanos)
1623            } else {
1624                (secs + 1, 0)
1625            }
1626        } else if exp < 64 {
1627            // the input has no fractional part
1628            let secs = u64::from(mant) << (exp - $mant_bits);
1629            (secs, 0)
1630        } else {
1631            return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::OverflowOrNan });
1632        };
1633
1634        Ok(Duration::new(secs, nanos))
1635    }};
1636}
1637
1638impl Duration {
1639    /// The checked version of [`from_secs_f32`].
1640    ///
1641    /// [`from_secs_f32`]: Duration::from_secs_f32
1642    ///
1643    /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite.
1644    ///
1645    /// # Examples
1646    /// ```
1647    /// use std::time::Duration;
1648    ///
1649    /// let res = Duration::try_from_secs_f32(0.0);
1650    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1651    /// let res = Duration::try_from_secs_f32(1e-20);
1652    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1653    /// let res = Duration::try_from_secs_f32(4.2e-7);
1654    /// assert_eq!(res, Ok(Duration::new(0, 420)));
1655    /// let res = Duration::try_from_secs_f32(2.7);
1656    /// assert_eq!(res, Ok(Duration::new(2, 700_000_048)));
1657    /// let res = Duration::try_from_secs_f32(3e10);
1658    /// assert_eq!(res, Ok(Duration::new(30_000_001_024, 0)));
1659    /// // subnormal float:
1660    /// let res = Duration::try_from_secs_f32(f32::from_bits(1));
1661    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1662    ///
1663    /// let res = Duration::try_from_secs_f32(-5.0);
1664    /// assert!(res.is_err());
1665    /// let res = Duration::try_from_secs_f32(f32::NAN);
1666    /// assert!(res.is_err());
1667    /// let res = Duration::try_from_secs_f32(2e19);
1668    /// assert!(res.is_err());
1669    ///
1670    /// // the conversion uses rounding with tie resolution to even
1671    /// let res = Duration::try_from_secs_f32(0.999e-9);
1672    /// assert_eq!(res, Ok(Duration::new(0, 1)));
1673    ///
1674    /// // this float represents exactly 976562.5e-9
1675    /// let val = f32::from_bits(0x3A80_0000);
1676    /// let res = Duration::try_from_secs_f32(val);
1677    /// assert_eq!(res, Ok(Duration::new(0, 976_562)));
1678    ///
1679    /// // this float represents exactly 2929687.5e-9
1680    /// let val = f32::from_bits(0x3B40_0000);
1681    /// let res = Duration::try_from_secs_f32(val);
1682    /// assert_eq!(res, Ok(Duration::new(0, 2_929_688)));
1683    ///
1684    /// // this float represents exactly 1.000_976_562_5
1685    /// let val = f32::from_bits(0x3F802000);
1686    /// let res = Duration::try_from_secs_f32(val);
1687    /// assert_eq!(res, Ok(Duration::new(1, 976_562)));
1688    ///
1689    /// // this float represents exactly 1.002_929_687_5
1690    /// let val = f32::from_bits(0x3F806000);
1691    /// let res = Duration::try_from_secs_f32(val);
1692    /// assert_eq!(res, Ok(Duration::new(1, 2_929_688)));
1693    /// ```
1694    #[stable(feature = "duration_checked_float", since = "1.66.0")]
1695    #[inline]
1696    pub fn try_from_secs_f32(secs: f32) -> Result<Duration, TryFromFloatSecsError> {
1697        try_from_secs!(
1698            secs = secs,
1699            mantissa_bits = 23,
1700            exponent_bits = 8,
1701            offset = 41,
1702            bits_ty = u32,
1703            double_ty = u64,
1704        )
1705    }
1706
1707    /// The checked version of [`from_secs_f64`].
1708    ///
1709    /// [`from_secs_f64`]: Duration::from_secs_f64
1710    ///
1711    /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite.
1712    ///
1713    /// # Examples
1714    /// ```
1715    /// use std::time::Duration;
1716    ///
1717    /// let res = Duration::try_from_secs_f64(0.0);
1718    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1719    /// let res = Duration::try_from_secs_f64(1e-20);
1720    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1721    /// let res = Duration::try_from_secs_f64(4.2e-7);
1722    /// assert_eq!(res, Ok(Duration::new(0, 420)));
1723    /// let res = Duration::try_from_secs_f64(2.7);
1724    /// assert_eq!(res, Ok(Duration::new(2, 700_000_000)));
1725    /// let res = Duration::try_from_secs_f64(3e10);
1726    /// assert_eq!(res, Ok(Duration::new(30_000_000_000, 0)));
1727    /// // subnormal float
1728    /// let res = Duration::try_from_secs_f64(f64::from_bits(1));
1729    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1730    ///
1731    /// let res = Duration::try_from_secs_f64(-5.0);
1732    /// assert!(res.is_err());
1733    /// let res = Duration::try_from_secs_f64(f64::NAN);
1734    /// assert!(res.is_err());
1735    /// let res = Duration::try_from_secs_f64(2e19);
1736    /// assert!(res.is_err());
1737    ///
1738    /// // the conversion uses rounding with tie resolution to even
1739    /// let res = Duration::try_from_secs_f64(0.999e-9);
1740    /// assert_eq!(res, Ok(Duration::new(0, 1)));
1741    /// let res = Duration::try_from_secs_f64(0.999_999_999_499);
1742    /// assert_eq!(res, Ok(Duration::new(0, 999_999_999)));
1743    /// let res = Duration::try_from_secs_f64(0.999_999_999_501);
1744    /// assert_eq!(res, Ok(Duration::new(1, 0)));
1745    /// let res = Duration::try_from_secs_f64(42.999_999_999_499);
1746    /// assert_eq!(res, Ok(Duration::new(42, 999_999_999)));
1747    /// let res = Duration::try_from_secs_f64(42.999_999_999_501);
1748    /// assert_eq!(res, Ok(Duration::new(43, 0)));
1749    ///
1750    /// // this float represents exactly 976562.5e-9
1751    /// let val = f64::from_bits(0x3F50_0000_0000_0000);
1752    /// let res = Duration::try_from_secs_f64(val);
1753    /// assert_eq!(res, Ok(Duration::new(0, 976_562)));
1754    ///
1755    /// // this float represents exactly 2929687.5e-9
1756    /// let val = f64::from_bits(0x3F68_0000_0000_0000);
1757    /// let res = Duration::try_from_secs_f64(val);
1758    /// assert_eq!(res, Ok(Duration::new(0, 2_929_688)));
1759    ///
1760    /// // this float represents exactly 1.000_976_562_5
1761    /// let val = f64::from_bits(0x3FF0_0400_0000_0000);
1762    /// let res = Duration::try_from_secs_f64(val);
1763    /// assert_eq!(res, Ok(Duration::new(1, 976_562)));
1764    ///
1765    /// // this float represents exactly 1.002_929_687_5
1766    /// let val = f64::from_bits(0x3_FF00_C000_0000_000);
1767    /// let res = Duration::try_from_secs_f64(val);
1768    /// assert_eq!(res, Ok(Duration::new(1, 2_929_688)));
1769    /// ```
1770    #[stable(feature = "duration_checked_float", since = "1.66.0")]
1771    #[inline]
1772    pub fn try_from_secs_f64(secs: f64) -> Result<Duration, TryFromFloatSecsError> {
1773        try_from_secs!(
1774            secs = secs,
1775            mantissa_bits = 52,
1776            exponent_bits = 11,
1777            offset = 44,
1778            bits_ty = u64,
1779            double_ty = u128,
1780        )
1781    }
1782}