
Rust Reference Manual

October 15, 2012

Contents

1 Introduction 1

1.1 Disclaimer . 1

2 Notation 2

2.1 Unicode productions . 3

2.2 String table productions . 3

3 Lexical structure 3

3.1 Input format . 3

3.2 Special Unicode Productions . 4

3.2.1 Identifiers . 4

3.2.2 Delimiter-restricted productions 4

3.3 Comments . 4

3.4 Whitespace . 5

3.5 Tokens . 5

3.5.1 Keywords . 5

3.5.2 Literals . 6

3.5.3 Symbols . 9

3.6 Paths . 10

1

4 Syntax extensions 10

4.1 Macros . 11

4.1.1 Macro By Example . 11

4.1.2 Parsing limitations . 12

4.2 Syntax extensions useful for the macro author 12

5 Crates and source files 13

5.1 Crate files . 14

5.1.1 Dir directives . 15

5.2 Source files . 15

6 Items and attributes 15

6.1 Items . 15

6.1.1 Type Parameters . 16

6.1.2 Modules . 16

6.1.3 Functions . 19

6.1.4 Type definitions . 23

6.1.5 Structures . 23

6.1.6 Enumerations . 23

6.1.7 Constants . 24

6.1.8 Traits . 24

6.1.9 Implementations . 25

6.1.10 Foreign modules . 26

6.2 Attributes . 27

7 Statements and expressions 28

7.1 Statements . 29

7.1.1 Declaration statements . 29

7.1.2 Expression statements . 29

7.2 Expressions . 30

7.2.1 Literal expressions . 30

7.2.2 Path expressions . 31

2

7.2.3 Tuple expressions . 31

7.2.4 Record expressions . 31

7.2.5 Method-call expressions 32

7.2.6 Field expressions . 32

7.2.7 Vector expressions . 32

7.2.8 Index expressions . 33

7.2.9 Unary operator expressions 33

7.2.10 Binary operator expressions 33

7.2.11 Grouped expressions . 37

7.2.12 Unary copy expressions 37

7.2.13 Unary move expressions 38

7.2.14 Call expressions . 38

7.2.15 Lambda expressions . 38

7.2.16 While loops . 39

7.2.17 Infinite loops . 40

7.2.18 Break expressions . 40

7.2.19 Loop expressions . 40

7.2.20 Do expressions . 40

7.2.21 For expressions . 41

7.2.22 If expressions . 41

7.2.23 Match expressions . 42

7.2.24 Fail expressions . 44

7.2.25 Return expressions . 45

7.2.26 Log expressions . 45

7.2.27 Assert expressions . 46

8 Type system 46

8.1 Types . 46

8.1.1 Primitive types . 46

8.1.2 Textual types . 48

8.1.3 Tuple types . 48

3

8.1.4 Vector types . 48

8.1.5 Structure types . 49

8.1.6 Enumerated types . 49

8.1.7 Recursive types . 49

8.1.8 Record types . 50

8.1.9 Pointer types . 50

8.1.10 Function types . 51

8.1.11 Trait types . 52

8.1.12 Type parameters . 52

8.1.13 Self types . 53

8.2 Type kinds . 53

9 Memory and concurrency models 54

9.1 Memory model . 54

9.1.1 Memory allocation and lifetime 55

9.1.2 Memory ownership . 55

9.1.3 Memory slots . 55

9.1.4 Memory boxes . 56

9.2 Tasks . 57

9.2.1 Communication between tasks 57

9.2.2 Task lifecycle . 58

9.2.3 Task scheduling . 59

9.2.4 Spawning tasks . 59

9.2.5 Sending values into channels 60

9.2.6 Receiving values from ports 60

10 Runtime services, linkage and debugging 60

10.0.7 Memory allocation . 60

10.0.8 Built in types . 61

10.0.9 Task scheduling and communication 61

10.0.10 Logging system . 61

4

11 Appendix: Rationales and design tradeoffs 62

12 Appendix: Influences and further references 63

12.1 Influences . 63

1 Introduction

This document is the reference manual for the Rust programming language. It
provides three kinds of material:

• Chapters that formally define the language grammar and, for each con-
struct, informally describe its semantics and give examples of its use.

• Chapters that informally describe the memory model, concurrency model,
runtime services, linkage model and debugging facilities.

• Appendix chapters providing rationale and references to languages that
influenced the design.

This document does not serve as a tutorial introduction to the language. Back-
ground familiarity with the language is assumed. A separate tutorial document
is available to help acquire such background familiarity.

This document also does not serve as a reference to the core or standard libraries
included in the language distribution. Those libraries are documented separately
by extracting documentation attributes from their source code.

1.1 Disclaimer

Rust is a work in progress. The language continues to evolve as the design shifts
and is fleshed out in working code. Certain parts work, certain parts do not,
certain parts will be removed or changed.

This manual is a snapshot written in the present tense. All features described
exist in working code unless otherwise noted, but some are quite primitive or
remain to be further modified by planned work. Some may be temporary. It is
a draft, and we ask that you not take anything you read here as final.

If you have suggestions to make, please try to focus them on reductions to the
language: possible features that can be combined or omitted. We aim to keep
the size and complexity of the language under control.

5

file:tutorial.html
file:core/index.html
file:std/index.html

Note: The grammar for Rust given in this document is rough and
very incomplete; only a modest number of sections have accompany-
ing grammar rules. Formalizing the grammar accepted by the Rust
parser is ongoing work, but future versions of this document will
contain a complete grammar. Moreover, we hope that this grammar
will be extracted and verified as LL(1) by an automated grammar-
analysis tool, and further tested against the Rust sources. Prelimi-
nary versions of this automation exist, but are not yet complete.

2 Notation

Rust’s grammar is defined over Unicode codepoints, each conventionally denoted
U+XXXX, for 4 or more hexadecimal digits X. Most of Rust’s grammar is confined
to the ASCII range of Unicode, and is described in this document by a dialect of
Extended Backus-Naur Form (EBNF), specifically a dialect of EBNF supported
by common automated LL(k) parsing tools such as llgen, rather than the
dialect given in ISO 14977. The dialect can be defined self-referentially as
follows:

grammar : rule + ;

rule : nonterminal ’:’ productionrule ’;’ ;

productionrule : production [’|’ production] * ;

production : term * ;

term : element repeats ;

element : LITERAL | IDENTIFIER | ’[’ productionrule ’]’ ;

repeats : [’*’ | ’+’] NUMBER ? | NUMBER ? | ’?’ ;

Where:

• Whitespace in the grammar is ignored.

• Square brackets are used to group rules.

• LITERAL is a single printable ASCII character, or an escaped hexadecimal
ASCII code of the form \xQQ, in single quotes, denoting the corresponding
Unicode codepoint U+00QQ.

• IDENTIFIER is a nonempty string of ASCII letters and underscores.

• The repeat forms apply to the adjacent element, and are as follows:

– ? means zero or one repetition

– * means zero or more repetitions

– + means one or more repetitions

6

– NUMBER trailing a repeat symbol gives a maximum repetition count

– NUMBER on its own gives an exact repetition count

This EBNF dialect should hopefully be familiar to many readers.

2.1 Unicode productions

A small number of productions in Rust’s grammar permit Unicode codepoints
outside the ASCII range; these productions are defined in terms of character
properties given by the Unicode standard, rather than ASCII-range codepoints.
These are given in the section Special Unicode Productions.

2.2 String table productions

Some rules in the grammar – notably unary operators, binary operators, and
keywords – are given in a simplified form: as a listing of a table of unquoted,
printable whitespace-separated strings. These cases form a subset of the rules
regarding the token rule, and are assumed to be the result of a lexical-analysis
phase feeding the parser, driven by a DFA, operating over the disjunction of all
such string table entries.

When such a string enclosed in double-quotes (") occurs inside the grammar,
it is an implicit reference to a single member of such a string table production.
See tokens for more information.

3 Lexical structure

3.1 Input format

Rust input is interpreted as a sequence of Unicode codepoints encoded in UTF-
8, normalized to Unicode normalization form NFKC. Most Rust grammar rules
are defined in terms of printable ASCII-range codepoints, but a small number
are defined in terms of Unicode properties or explicit codepoint lists. 1

3.2 Special Unicode Productions

The following productions in the Rust grammar are defined in terms of
Unicode properties: ident, non null, non star, non eol, non slash,
non single quote and non double quote.

1Substitute definitions for the special Unicode productions are provided to the grammar
verifier, restricted to ASCII range, when verifying the grammar in this document.

7

3.2.1 Identifiers

The ident production is any nonempty Unicode string of the following form:

• The first character has property XID start

• The remaining characters have property XID continue

that does not occur in the set of keywords.

Note: XID start and XID continue as character properties cover the character
ranges used to form the more familiar C and Java language-family identifiers.

3.2.2 Delimiter-restricted productions

Some productions are defined by exclusion of particular Unicode characters:

• non null is any single Unicode character aside from U+0000 (null)

• non eol is non null restricted to exclude U+000A (’\n’)

• non star is non null restricted to exclude U+002A (*)

• non slash is non null restricted to exclude U+002F (/)

• non single quote is non null restricted to exclude U+0027 (’)

• non double quote is non null restricted to exclude U+0022 (")

3.3 Comments

comment : block_comment | line_comment ;

block_comment : "/*" block_comment_body * "*/" ;

block_comment_body : non_star * | ’*’ non_slash ;

line_comment : "//" non_eol * ;

Comments in Rust code follow the general C++ style of line and block-comment
forms, with no nesting of block-comment delimiters.

Line comments beginning with three slashes (///), and block comments begin-
ning with a repeated asterisk in the block-open sequence (/**), are interpreted
as a special syntax for doc attributes. That is, they are equivalent to writing
#[doc "..."] around the comment’s text.

Non-doc comments are interpreted as a form of whitespace.

8

3.4 Whitespace

whitespace_char : ’\x20’ | ’\x09’ | ’\x0a’ | ’\x0d’ ;

whitespace : [whitespace_char | comment] + ;

The whitespace char production is any nonempty Unicode string consisting
of any of the following Unicode characters: U+0020 (space, ’ ’), U+0009 (tab,
’\t’), U+000A (LF, ’\n’), U+000D (CR, ’\r’).

Rust is a “free-form” language, meaning that all forms of whitespace serve only
to separate tokens in the grammar, and have no semantic significance.

A Rust program has identical meaning if each whitespace element is replaced
with any other legal whitespace element, such as a single space character.

3.5 Tokens

simple_token : keyword | unop | binop ;

token : simple_token | ident | literal | symbol | whitespace token ;

Tokens are primitive productions in the grammar defined by regular (non-
recursive) languages. “Simple” tokens are given in string table production form,
and occur in the rest of the grammar as double-quoted strings. Other tokens
have exact rules given.

3.5.1 Keywords

The keywords in crate files are the following strings:

mod priv pub use

The keywords in source files are the following strings:

as assert

break

const copy

do drop

else enum extern

fail false fn for

if impl

let log loop

match mod move mut

priv pub pure

ref return

9

self static struct

true trait type

unsafe use

while

Any of these have special meaning in their respective grammars, and are ex-
cluded from the ident rule.

3.5.2 Literals

A literal is an expression consisting of a single token, rather than a sequence of
tokens, that immediately and directly denotes the value it evaluates to, rather
than referring to it by name or some other evaluation rule. A literal is a form
of constant expression, so is evaluated (primarily) at compile time.

literal : string_lit | char_lit | num_lit ;

Character and string literals

char_lit : ’\x27’ char_body ’\x27’ ;

string_lit : ’"’ string_body * ’"’ ;

char_body : non_single_quote

| ’\x5c’ [’\x27’ | common_escape] ;

string_body : non_double_quote

| ’\x5c’ [’\x22’ | common_escape] ;

common_escape : ’\x5c’

| ’n’ | ’r’ | ’t’

| ’x’ hex_digit 2

| ’u’ hex_digit 4

| ’U’ hex_digit 8 ;

hex_digit : ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’

| ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’

| dec_digit ;

dec_digit : ’0’ | nonzero_dec ;

nonzero_dec: ’1’ | ’2’ | ’3’ | ’4’

| ’5’ | ’6’ | ’7’ | ’8’ | ’9’ ;

A character literal is a single Unicode character enclosed within two U+0027

(single-quote) characters, with the exception of U+0027 itself, which must be
escaped by a preceding U+005C character (\).

10

A string literal is a sequence of any Unicode characters enclosed within two
U+0022 (double-quote) characters, with the exception of U+0022 itself, which
must be escaped by a preceding U+005C character (\).

Some additional escapes are available in either character or string literals. An
escape starts with a U+005C (\) and continues with one of the following forms:

• An 8-bit codepoint escape escape starts with U+0078 (x) and is followed
by exactly two hex digits. It denotes the Unicode codepoint equal to the
provided hex value.

• A 16-bit codepoint escape starts with U+0075 (u) and is followed by exactly
four hex digits. It denotes the Unicode codepoint equal to the provided
hex value.

• A 32-bit codepoint escape starts with U+0055 (U) and is followed by exactly
eight hex digits. It denotes the Unicode codepoint equal to the provided
hex value.

• A whitespace escape is one of the characters U+006E (n), U+0072 (r), or
U+0074 (t), denoting the unicode values U+000A (LF), U+000D (CR) or
U+0009 (HT) respectively.

• The backslash escape is the character U+005C (\) which must be escaped
in order to denote itself.

Number literals

num_lit : nonzero_dec [dec_digit | ’_’] * num_suffix ?

| ’0’ [[dec_digit | ’_’] + num_suffix ?

| ’b’ [’1’ | ’0’ | ’_’] + int_suffix ?

| ’x’ [hex_digit | ’-’] + int_suffix ?] ;

num_suffix : int_suffix | float_suffix ;

int_suffix : ’u’ int_suffix_size ?

| ’i’ int_suffix_size ;

int_suffix_size : [’8’ | ’1’ ’6’ | ’3’ ’2’ | ’6’ ’4’] ;

float_suffix : [exponent | ’.’ dec_lit exponent ?] float_suffix_ty ? ;

float_suffix_ty : ’f’ [’3’ ’2’ | ’6’ ’4’] ;

exponent : [’E’ | ’e’] [’-’ | ’+’] ? dec_lit ;

dec_lit : [dec_digit | ’_’] + ;

A number literal is either an integer literal or a floating-point literal. The gram-
mar for recognizing the two kinds of literals is mixed, as they are differentiated
by suffixes.

11

Integer literals An integer literal has one of three forms:

• A decimal literal starts with a decimal digit and continues with any mix-
ture of decimal digits and underscores.

• A hex literal starts with the character sequence U+0030 U+0078 (0x) and
continues as any mixture hex digits and underscores.

• A binary literal starts with the character sequence U+0030 U+0062 (0b)
and continues as any mixture binary digits and underscores.

An integer literal may be followed (immediately, without any spaces) by an
integer suffix, which changes the type of the literal. There are two kinds of
integer literal suffix:

• The i and u suffixes give the literal type int or uint, respectively.

• Each of the signed and unsigned machine types u8, i8, u16, i16, u32, i32,
u64 and i64 give the literal the corresponding machine type.

The type of an unsuffixed integer literal is determined by type inference. If a
integer type can be uniquely determined from the surrounding program context,
the unsuffixed integer literal has that type. If the program context undercon-
strains the type, the unsuffixed integer literal’s type is int; if the program
context overconstrains the type, it is considered a static type error.

Examples of integer literals of various forms:

123; 0xff00; // type determined by program context

// defaults to int in absence of type

// information

123u; // type uint

123_u; // type uint

0xff_u8; // type u8

0b1111_1111_1001_0000_i32; // type i32

Floating-point literals A floating-point literal has one of two forms:

• Two decimal literals separated by a period character U+002E (.), with an
optional exponent trailing after the second decimal literal.

• A single decimal literal followed by an exponent.

12

By default, a floating-point literal is of type float. A floating-point literal may
be followed (immediately, without any spaces) by a floating-point suffix, which
changes the type of the literal. There are three floating-point suffixes: f (for
the base float type), f32, and f64 (the 32-bit and 64-bit floating point types).

Examples of floating-point literals of various forms:

123.0; // type float

0.1; // type float

3f; // type float

0.1f32; // type f32

12E+99_f64; // type f64

Unit and boolean literals The unit value, the only value of the type that
has the same name, is written as (). The two values of the boolean type are
written true and false.

3.5.3 Symbols

symbol : "::" "->"

| ’#’ | ’[’ | ’]’ | ’(’ | ’)’ | ’{’ | ’}’

| ’,’ | ’;’ ;

Symbols are a general class of printable token that play structural roles in a
variety of grammar productions. They are catalogued here for completeness
as the set of remaining miscellaneous printable tokens that do not otherwise
appear as unary operators, binary operators, or keywords.

3.6 Paths

expr_path : ident ["::" expr_path_tail] + ;

expr_path_tail : ’<’ type_expr [’,’ type_expr] + ’>’

| expr_path ;

type_path : ident [type_path_tail] + ;

type_path_tail : ’<’ type_expr [’,’ type_expr] + ’>’

| "::" type_path ;

A path is a sequence of one or more path components logically separated by
a namespace qualifier (::). If a path consists of only one component, it may
refer to either an item or a slot in a local control scope. If a path has multiple
components, it refers to an item.

13

Every item has a canonical path within its crate, but the path naming an item
is only meaningful within a given crate. There is no global namespace across
crates; an item’s canonical path merely identifies it within the crate.

Two examples of simple paths consisting of only identifier components:

x;

x::y::z;

Path components are usually identifiers, but the trailing component of a path
may be an angle-bracket-enclosed list of type arguments. In expression context,
the type argument list is given after a final (::) namespace qualifier in order
to disambiguate it from a relational expression involving the less-than symbol
(<). In type expression context, the final namespace qualifier is omitted.

Two examples of paths with type arguments:

type t = map::HashMap<int,~str>; // Type arguments used in a type expression

let x = id::<int>(10); // Type arguments used in a call expression

4 Syntax extensions

A number of minor features of Rust are not central enough to have their own
syntax, and yet are not implementable as functions. Instead, they are given
names, and invoked through a consistent syntax: name!(...). Examples in-
clude:

• fmt! : format data into a string

• env! : look up an environment variable’s value at compile time

• stringify! : pretty-print the Rust expression given as an argument

• proto! : define a protocol for inter-task communication

• include! : include the Rust expression in the given file

• include str! : include the contents of the given file as a string

• include bin! : include the contents of the given file as a binary blob

• error!, warn!, info!, debug! : provide diagnostic information.

All of the above extensions, with the exception of proto!, are expressions with
values. proto! is an item, defining a new name.

14

4.1 Macros

expr_macro_rules : "macro_rules" ’!’ ident ’(’ macro_rule * ’)’

macro_rule : ’(’ matcher * ’)’ "=>" ’(’ transcriber * ’)’ ’;’

matcher : ’(’ matcher * ’)’ | ’[’ matcher * ’]’

| ’{’ matcher * ’}’ | ’$’ ident ’:’ ident

| ’$’ ’(’ matcher * ’)’ sep_token? [’*’ | ’+’]

| non_special_token

transcriber : ’(’ transcriber * ’)’ | ’[’ transcriber * ’]’

| ’{’ transcriber * ’}’ | ’$’ ident

| ’$’ ’(’ transcriber * ’)’ sep_token? [’*’ | ’+’]

| non_special_token

User-defined syntax extensions are called “macros”, and they can be defined
with the macro rules! syntax extension. User-defined macros can currently
only be invoked in expression position.

(A sep token is any token other than * and +. A non special token is any
token other than a delimiter or $.)

Macro invocations are looked up by name, and each macro rule is tried in
turn; the first successful match is transcribed. The matching and transcription
processes are closely related, and will be described together:

4.1.1 Macro By Example

The macro expander matches and transcribes every token that does not begin
with a $ literally, including delimiters. For parsing reasons, delimiters must be
balanced, but they are otherwise not special.

In the matcher, $ name : designator matches the nonterminal in the Rust
syntax named by designator. Valid designators are item, block, stmt, pat,
expr, ty, ident, path, tt, matchers. The last two are the right-hand side and
the left-hand side respectively of the => in macro rules. In the transcriber, the
designator is already known, and so only the name of a matched nonterminal
comes after the dollar sign.

In both the matcher and transcriber, the Kleene star-like operator indicates rep-
etition. The Kleene star operator consists of $ and parens, optionally followed
by a separator token, followed by * or +. * means zero or more repetitions, +
means at least one repetition. The parens are not matched or transcribed. On
the matcher side, a name is bound to all of the names it matches, in a structure
that mimics the structure of the repetition encountered on a successful match.
The job of the transcriber is to sort that structure out.

The rules for transcription of these repetitions are called “Macro By Example”.
Essentially, one “layer” of repetition is discharged at a time, and all of them must

15

be discharged by the time a name is transcribed. Therefore, ($($i:ident

),*) => ($i) is an invalid macro, but ($($i:ident),*) => ($(

$i:ident),*) is acceptable (if trivial).

When Macro By Example encounters a repetition, it examines all of the $

name s that occur in its body. At the “current layer”, they all must repeat
the same number of times, so ($($i:ident),* ; $($j:ident),*) =>
($(($i,$j)),*) is valid if given the argument (a,b,c ; d,e,f), but not
(a,b,c ; d,e). The repetition walks through the choices at that layer in lock-
step, so the former input transcribes to ((a,d), (b,e), (c,f)).

Nested repetitions are allowed.

4.1.2 Parsing limitations

The parser used by the macro system is reasonably powerful, but the parsing
of Rust syntax is restricted in two ways:

1. The parser will always parse as much as possible. If it attempts to match
$i:expr [,] against 8 [,], it will attempt to parse i as an array
index operation and fail. Adding a separator can solve this problem.

2. The parser must have eliminated all ambiguity by the time it reaches a $

name : designator. This requirement most often affects name-designator
pairs when they occur at the beginning of, or immediately after, a
$(...)*; requiring a distinctive token in front can solve the problem.

4.2 Syntax extensions useful for the macro author

• log syntax! : print out the arguments at compile time

• trace macros! : supply true or false to enable or disable printing of
the macro expansion process.

• ident to str! : turn the identifier argument into a string literal

• concat idents! : create a new identifier by concatenating the arguments

5 Crates and source files

Rust is a compiled language. Its semantics obey a phase distinction between
compile-time and run-time. Those semantic rules that have a static interpre-
tation govern the success or failure of compilation. We refer to these rules as
“static semantics”. Semantic rules called “dynamic semantics” govern the be-
havior of programs at run-time. A program that fails to compile due to violation

16

of a compile-time rule has no defined dynamic semantics; the compiler should
halt with an error report, and produce no executable artifact.

The compilation model centres on artifacts called crates. Each compilation
processes a single crate in source form, and if successful, produces a single crate
in binary form: either an executable or a library.

A crate is a unit of compilation and linking, as well as versioning, distribution
and runtime loading. A crate contains a tree of nested module scopes. The top
level of this tree is a module that is anonymous (from the point of view of paths
within the module) and any item within a crate has a canonical module path
denoting its location within the crate’s module tree.

Crates are provided to the Rust compiler through two kinds of file:

• crate files, that end in .rc and each define a crate.

• source files, that end in .rs and each define a module.

Note: The functionality of crate files will be merged into source
files in future versions of Rust. The separate processing of crate
files, both their grammar and file extension, will be removed.

The Rust compiler is always invoked with a single crate file as input, and always
produces a single output crate.

When the Rust compiler is invoked with a crate file, it reads the explicit def-
inition of the crate it’s compiling from that file, and populates the crate with
modules derived from all the source files referenced by the crate, reading and
processing all the referenced modules at once.

When the Rust compiler is invoked with a source file, it creates an implicit crate
and treats the source file as if it is the sole module populating this explicit crate.
The module name is derived from the source file name, with the .rs extension
removed.

5.1 Crate files

crate : attribute [’;’ | attribute* directive]

| directive ;

directive : view_item | dir_directive | source_directive ;

A crate file contains a crate definition, for which the production above defines
the grammar. It is a declarative grammar that guides the compiler in assembling
a crate from component source files.2 A crate file describes:

2A crate is somewhat analogous to an assembly in the ECMA-335 CLI model, a library
in the SML/NJ Compilation Manager, a unit in the Owens and Flatt module system, or a
configuration in Mesa.

17

• Attributes about the crate, such as author, name, version, and copyright.
These are used for linking, versioning and distributing crates.

• The source-file and directory modules that make up the crate.

• Any use or extern mod view items that apply to the anonymous module
at the top-level of the crate’s module tree.

An example of a crate file:

// Linkage attributes

#[link(name = "projx"

vers = "2.5",

uuid = "9cccc5d5-aceb-4af5-8285-811211826b82")];

// Additional metadata attributes

#[desc = "Project X",

license = "BSD"];

author = "Jane Doe"];

// Import a module.

extern mod std (ver = "1.0");

// Define some modules.

#[path = "foo.rs"]

mod foo;

mod bar {

#[path = "quux.rs"]

mod quux;

}

5.1.1 Dir directives

A dir directive forms a module in the module tree making up the crate, as
well as implicitly relating that module to a directory in the filesystem containing
source files and/or further subdirectories. The filesystem directory associated
with a dir directive module can either be explicit, or if omitted, is implicitly
the same name as the module.

A source directive references a source file, either explicitly or implicitly, by
combining the module name with the file extension .rs. The module contained
in that source file is bound to the module path formed by the dir directive

modules containing the source directive.

18

5.2 Source files

A source file contains a module: that is, a sequence of zero or more item defi-
nitions. Each source file is an implicit module, the name and location of which
– in the module tree of the current crate – is defined from outside the source
file: either by an explicit source directive in a referencing crate file, or by
the filename of the source file itself.

A source file that contains a main function can be compiled to an executable.
If a main function is present, its return type must be unit and it must take no
arguments.

6 Items and attributes

Crates contain items, each of which may have some number of attributes at-
tached to it.

6.1 Items

item : mod_item | fn_item | type_item | enum_item

| const_item | trait_item | impl_item | foreign_mod_item ;

An item is a component of a crate; some module items can be defined in crate
files, but most are defined in source files. Items are organized within a crate
by a nested set of modules. Every crate has a single “outermost” anonymous
module; all further items within the crate have paths within the module tree of
the crate.

Items are entirely determined at compile-time, remain constant during execu-
tion, and may reside in read-only memory.

There are several kinds of item:

• modules

• functions

• type definitions

• structures

• enumerations

• constants

• traits

19

• implementations

Some items form an implicit scope for the declaration of sub-items. In other
words, within a function or module, declarations of items can (in many cases) be
mixed with the statements, control blocks, and similar artifacts that otherwise
compose the item body. The meaning of these scoped items is the same as if the
item was declared outside the scope – it is still a static item – except that the
item’s path name within the module namespace is qualified by the name of the
enclosing item, or is private to the enclosing item (in the case of functions). The
exact locations in which sub-items may be declared is given by the grammar.

6.1.1 Type Parameters

All items except modules may be parametrized by type. Type parameters
are given as a comma-separated list of identifiers enclosed in angle brackets
(<...>), after the name of the item and before its definition. The type pa-
rameters of an item are considered “part of the name”, not the type of the
item; in order to refer to the type-parametrized item, a referencing path must
in general provide type arguments as a list of comma-separated types enclosed
within angle brackets. In practice, the type-inference system can usually infer
such argument types from context. There are no general type-parametric types,
only type-parametric items.

6.1.2 Modules

mod_item : "mod" ident ’{’ mod ’}’ ;

mod : [view_item | item] * ;

A module is a container for zero or more view items and zero or more items.
The view items manage the visibility of the items defined within the module,
as well as the visibility of names from outside the module when referenced from
inside the module.

A module item is a module, surrounded in braces, named, and prefixed with the
keyword mod. A module item introduces a new, named module into the tree of
modules making up a crate. Modules can nest arbitrarily.

An example of a module:

mod math {

type complex = (f64, f64);

fn sin(f: f64) -> f64 {

...

}

fn cos(f: f64) -> f64 {

20

...

}

fn tan(f: f64) -> f64 {

...

}

}

View items

view_item : extern_mod_decl | use_decl ;

A view item manages the namespace of a module; it does not define new items
but simply changes the visibility of other items. There are several kinds of view
item:

• extern mod declarations

• use declarations

Extern mod declarations

extern_mod_decl : "extern" "mod" ident [’(’ link_attrs ’)’] ? ;

link_attrs : link_attr [’,’ link_attrs] + ;

link_attr : ident ’=’ literal ;

An extern mod declaration specifies a dependency on an external crate. The
external crate is then bound into the declaring scope as the ident provided in
the extern mod decl.

The external crate is resolved to a specific soname at compile time, and a runtime
linkage requirement to that soname is passed to the linker for loading at runtime.
The soname is resolved at compile time by scanning the compiler’s library path
and matching the link attrs provided in the use decl against any #link

attributes that were declared on the external crate when it was compiled. If
no link attrs are provided, a default name attribute is assumed, equal to the
ident given in the use decl.

Two examples of extern mod declarations:

extern mod pcre (uuid = "54aba0f8-a7b1-4beb-92f1-4cf625264841");

extern mod std; // equivalent to: extern mod std (name = "std");

extern mod ruststd (name = "std"); // linking to ’std’ under another name

21

Use declarations

use_decl : "use" ident [’=’ path

| "::" path_glob] ;

path_glob : ident ["::" path_glob] ?

| ’*’

| ’{’ ident [’,’ ident] * ’}’

A use declaration creates one or more local name bindings synonymous with
some other path. Usually a use declaration is used to shorten the path required
to refer to a module item.

Note: unlike many languages, Rust’s use declarations do not declare linkage-
dependency with external crates. Linkage dependencies are independently de-
clared with extern mod declarations.

Use declarations support a number of “convenience” notations:

• Rebinding the target name as a new local name, using the syntax use x

= p::q::r;.

• Simultaneously binding a list of paths differing only in final element, using
the glob-like brace syntax use a::b::{c,d,e,f};

• Binding all paths matching a given prefix, using the glob-like asterisk
syntax use a::b::*;

An example of use declarations:

use foo = core::info;

use core::float::sin;

use core::str::{slice, to_upper};

use core::option::Some;

fn main() {

// Equivalent to ’log(core::info, core::float::sin(1.0));’

log(foo, sin(1.0));

// Equivalent to ’log(core::info, core::option::Some(1.0));’

log(info, Some(1.0));

// Equivalent to ’log(core::info,

// core::str::to_upper(core::str::slice("foo", 0u, 1u)));’

log(info, to_upper(slice("foo", 0u, 1u)));

}

22

Like items, use declarations are private to the containing module, by default.
Also like items, a use declaration can be public, if qualified by the pub keyword.
A public use declaration can therefore be used to redirect some public name
to a different target definition, even a definition with a private canonical path,
inside a different module. If a sequence of such redirections form a cycle or
cannot be unambiguously resolved, they represent a compile-time error.

6.1.3 Functions

A function item defines a sequence of statements and an optional final expression
associated with a name and a set of parameters. Functions are declared with
the keyword fn. Functions declare a set of input slots as parameters, through
which the caller passes arguments into the function, and an output slot through
which the function passes results back to the caller.

A function may also be copied into a first class value, in which case the value
has the corresponding function type, and can be used otherwise exactly as a
function item (with a minor additional cost of calling the function indirectly).

Every control path in a function logically ends with a return expression or a
diverging expression. If the outermost block of a function has a value-producing
expression in its final-expression position, that expression is interpreted as an
implicit return expression applied to the final-expression.

An example of a function:

fn add(x: int, y: int) -> int {

return x + y;

}

Generic functions A generic function allows one or more parameterized types
to appear in its signature. Each type parameter must be explicitly declared, in
an angle-bracket-enclosed, comma-separated list following the function name.

fn iter<T>(seq: &[T], f: fn(T)) {

for seq.each |elt| { f(elt); }

}

fn map<T, U>(seq: &[T], f: fn(T) -> U) -> ~[U] {

let mut acc = ~[];

for seq.each |elt| { acc.push(f(elt)); }

acc

}

Inside the function signature and body, the name of the type parameter can be
used as a type name.

23

When a generic function is referenced, its type is instantiated based on the
context of the reference. For example, calling the iter function defined above
on [1, 2] will instantiate type parameter T with int, and require the closure
parameter to have type fn(int).

Since a parameter type is opaque to the generic function, the set of operations
that can be performed on it is limited. Values of parameter type can always be
moved, but they can only be copied when the parameter is given a Copy bound.

fn id<T: Copy>(x: T) -> T { x }

Similarly, trait bounds can be specified for type parameters to allow methods
with that trait to be called on values of that type.

Unsafe functions Unsafe functions are those containing unsafe operations
that are not contained in an unsafe block. Such a function must be prefixed
with the keyword unsafe.

Unsafe operations are those that potentially violate the memory-safety guaran-
tees of Rust’s static semantics. Specifically, the following operations are consid-
ered unsafe:

• Dereferencing a raw pointer.

• Casting a raw pointer to a safe pointer type.

• Breaking the purity-checking rules in a pure function.

• Calling an unsafe function.

Unsafe blocks A block of code can also be prefixed with the unsafe keyword,
to permit a sequence of unsafe operations in an otherwise-safe function. This
facility exists because the static semantics of a Rust are a necessary approxima-
tion of the dynamic semantics. When a programmer has sufficient conviction
that a sequence of unsafe operations is actually safe, they can encapsulate that
sequence (taken as a whole) within an unsafe block. The compiler will consider
uses of such code “safe”, to the surrounding context.

Pure functions A pure function declaration is identical to a function decla-
ration, except that it is declared with the additional keyword pure. In addition,
the typechecker checks the body of a pure function with a restricted set of
typechecking rules. A pure function

• may not contain an assignment or self-call expression; and

24

• may only call other pure functions, not general functions.

An example of a pure function:

pure fn lt_42(x: int) -> bool {

return (x < 42);

}

Pure functions may call other pure functions:

pure fn pure_length<T>(ls: List<T>) -> uint { ... }

pure fn nonempty_list<T>(ls: List<T>) -> bool { pure_length(ls) > 0u }

These purity-checking rules approximate the concept of referential transparency:
that a call-expression could be rewritten with the literal-expression of its return
value, without changing the meaning of the program. Since they are an approx-
imation, sometimes these rules are too restrictive. Rust allows programmers to
violate these rules using unsafe blocks. As with any unsafe block, those that
violate static purity carry transfer the burden of safety-proof from the compiler
to the programmer. Programmers should exercise caution when breaking such
rules.

An example of a pure function that uses an unsafe block:

fn pure_foldl<T, U: Copy>(ls: List<T>, u: U, f: fn(&T, &U) -> U) -> U {

match ls {

Nil => u,

Cons(hd, tl) => f(hd, pure_foldl(*tl, f(hd, u), f))

}

}

pure fn pure_length<T>(ls: List<T>) -> uint {

fn count<T>(_t: &T, u: &uint) -> uint { *u + 1u }

unsafe {

pure_foldl(ls, 0u, count)

}

}

Despite its name, pure foldl is a fn, not a pure fn, because there is no way
in Rust to specify that the higher-order function argument f is a pure function.
So, to use foldl in a pure list length function that a pure function could then
use, we must use an unsafe block wrapped around the call to pure foldl in
the definition of pure length.

25

Diverging functions A special kind of function can be declared with a !

character where the output slot type would normally be. For example:

fn my_err(s: &str) -> ! {

log(info, s);

fail;

}

We call such functions “diverging” because they never return a value to the
caller. Every control path in a diverging function must end with a fail or a
call to another diverging function on every control path. The ! annotation does
not denote a type. Rather, the result type of a diverging function is a special
type called ⊥ (“bottom”) that unifies with any type. Rust has no syntax for ⊥.

It might be necessary to declare a diverging function because as mentioned
previously, the typechecker checks that every control path in a function ends
with a return or diverging expression. So, if my err were declared without the
! annotation, the following code would not typecheck:

fn f(i: int) -> int {

if i == 42 {

return 42;

}

else {

my_err("Bad number!");

}

}

This will not compile without the ! annotation on my err, since the else branch
of the conditional in f does not return an int, as required by the signature of
f. Adding the ! annotation to my err informs the typechecker that, should
control ever enter my err, no further type judgments about f need to hold,
since control will never resume in any context that relies on those judgments.
Thus the return type on f only needs to reflect the if branch of the conditional.

Extern functions Extern functions are part of Rust’s foreign function inter-
face, providing the opposite functionality to foreign modules. Whereas foreign
modules allow Rust code to call foreign code, extern functions with bodies de-
fined in Rust code can be called by foreign code. They are defined the same
as any other Rust function, except that they are prepended with the extern

keyword.

extern fn new_vec() -> ~[int] { ~[] }

26

Extern functions may not be called from Rust code, but their value may be
taken as a raw u8 pointer.

let fptr: *u8 = new_vec;

The primary motivation of extern functions is to create callbacks for foreign
functions that expect to receive function pointers.

6.1.4 Type definitions

A type definition defines a new name for an existing type. Type definitions are
declared with the keyword type. Every value has a single, specific type; the
type-specified aspects of a value include:

• Whether the value is composed of sub-values or is indivisible.

• Whether the value represents textual or numerical information.

• Whether the value represents integral or floating-point information.

• The sequence of memory operations required to access the value.

• The kind of the type.

For example, the type {x: u8, y: u8} defines the set of immutable values
that are composite records, each containing two unsigned 8-bit integers accessed
through the components x and y, and laid out in memory with the x component
preceding the y component.

6.1.5 Structures

A structure is a nominal structure type defined with the keyword struct.

An example of a struct item and its use:

struct Point {x: int, y: int}

let p = Point {x: 10, y: 11};

let px: int = p.x;

27

6.1.6 Enumerations

An enumeration is a simulatneous definition of a nominal enumerated type as
well as a set of constructors, that can be used to create or pattern-match values
of the corresponding enumerated type.

Enumerations are declared with the keyword enum.

An example of an enum item and its use:

enum Animal {

Dog,

Cat

}

let mut a: Animal = Dog;

a = Cat;

6.1.7 Constants

const_item : "const" ident ’:’ type ’=’ expr ’;’ ;

A Constant is a named value stored in read-only memory in a crate. The
value bound to a constant is evaluated at compile time. Constants are declared
with the const keyword. A constant item must have an expression giving its
definition. The definition expression of a constant is limited to expression forms
that can be evaluated at compile time.

6.1.8 Traits

A trait describes a set of method types.

Traits can include default implementations of methods, written in terms of
some unknown self type; the self type may either be completely unspecified,
or constrained by some other trait type.

Traits are implemented for specific types through separate implementations.

trait Shape {

fn draw(Surface);

fn bounding_box() -> BoundingBox;

}

28

This defines a trait with two methods. All values that have implementations of
this trait in scope can have their draw and bounding box methods called, using
value.bounding box() syntax.

Type parameters can be specified for a trait to make it generic. These appear
after the trait name, using the same syntax used in generic functions.

trait Seq<T> {

fn len() -> uint;

fn elt_at(n: uint) -> T;

fn iter(fn(T));

}

Generic functions may use traits as bounds on their type parameters. This will
have two effects: only types that have the trait may instantiate the parameter,
and within the generic function, the methods of the trait can be called on values
that have the parameter’s type. For example:

fn draw_twice<T: Shape>(surface: Surface, sh: T) {

sh.draw(surface);

sh.draw(surface);

}

Traits also define a type with the same name as the trait. Values of this type
are created by casting pointer values (pointing to a type for which an imple-
mentation of the given trait is in scope) to pointers to the trait name, used as
a type.

let myshape: Shape = @mycircle as @Shape;

The resulting value is a managed box containing the value that was cast, along
with information that identify the methods of the implementation that was used.
Values with a trait type can have methods called on them, for any method in
the trait, and can be used to instantiate type parameters that are bounded by
the trait.

6.1.9 Implementations

An implementation is an item that implements a trait for a specific type.

Implementations are defined with the keyword impl.

29

type Circle = {radius: float, center: Point};

impl Circle: Shape {

fn draw(s: Surface) { do_draw_circle(s, self); }

fn bounding_box() -> BoundingBox {

let r = self.radius;

{x: self.center.x - r, y: self.center.y - r,

width: 2.0 * r, height: 2.0 * r}

}

}

It is possible to define an implementation without referring to a trait. The meth-
ods in such an implementation can only be used statically (as direct calls on
the values of the type that the implementation targets). In such an implemen-
tation, the type after the colon is omitted. Such implementations are limited
to nominal types (enums, structs), and the implementation must appear in the
same module or a sub-module as the self type.

When a trait is specified in an impl, all methods declared as part of the trait
must be implemented, with matching types and type parameter counts.

An implementation can take type parameters, which can be different from the
type parameters taken by the trait it implements. Implementation parameters
are written after after the impl keyword.

impl<T> ~[T]: Seq<T> {

...

}

impl u32: Seq<bool> {

/* Treat the integer as a sequence of bits */

}

6.1.10 Foreign modules

foreign_mod_item : "extern mod" ident ’{’ foreign_mod ’} ;

foreign_mod : [foreign_fn] * ;

Foreign modules form the basis for Rust’s foreign function interface. A foreign
module describes functions in external, non-Rust libraries. Functions within for-
eign modules are declared the same as other Rust functions, with the exception
that they may not have a body and are instead terminated by a semi-colon.

30

extern mod c {

fn fopen(filename: *c_char, mode: *c_char) -> *FILE;

}

Functions within foreign modules may be called by Rust code as it would any
normal function and the Rust compiler will automatically translate between the
Rust ABI and the foreign ABI.

The name of the foreign module has special meaning to the Rust compiler in that
it will treat the module name as the name of a library to link to, performing the
linking as appropriate for the target platform. The name given for the foreign
module will be transformed in a platform-specific way to determine the name of
the library. For example, on Linux the name of the foreign module is prefixed
with ‘lib’ and suffixed with ’.so’, so the foreign mod ‘rustrt’ would be linked to
a library named ‘librustrt.so’.

A number of attributes control the behavior of foreign modules.

By default foreign modules assume that the library they are calling use the
standard C “cdecl” ABI. Other ABI’s may be specified using the abi attribute
as in

// Interface to the Windows API

#[abi = "stdcall"]

extern mod kernel32 { }

The link name attribute allows the default library naming behavior to be over-
riden by explicitly specifying the name of the library.

#[link_name = "crypto"]

extern mod mycrypto { }

The nolink attribute tells the Rust compiler not to perform any linking for the
foreign module. This is particularly useful for creating foreign modules for libc,
which tends to not follow standard library naming conventions and is linked to
all Rust programs anyway.

6.2 Attributes

attribute : ’#’ ’[’ attr_list ’]’ ;

attr_list : attr [’,’ attr_list]*

attr : ident [’=’ literal

| ’(’ attr_list ’)’] ? ;

31

Static entities in Rust – crates, modules and items – may have attributes applied
to them. 3 An attribute is a general, free-form piece of metadata that is
interpreted according to name, convention, and language and compiler version.
Attributes may appear as any of:

• A single identifier, the attribute name

• An identifier followed by the equals sign ‘=’ and a literal, providing a
key/value pair

• An identifier followed by a parenthesized list of sub-attribute arguments

Attributes are applied to an entity by placing them within a hash-list (#[...])
as either a prefix to the entity or as a semicolon-delimited declaration within
the entity body.

An example of attributes:

// General metadata applied to the enclosing module or crate.

#[license = "BSD"];

// A function marked as a unit test

#[test]

fn test_foo() {

...

}

// A conditionally-compiled module

#[cfg(target_os="linux")]

mod bar {

...

}

// A documentation attribute

#[doc = "Add two numbers together."]

fn add(x: int, y: int) { x + y }

Note: In future versions of Rust, user-provided extensions to the
compiler will be able to interpret attributes. When this facility is
provided, the compiler will distinguish between language-reserved
and user-available attributes.

At present, only the Rust compiler interprets attributes, so all attribute names
are effectively reserved. Some significant attributes include:

3Attributes in Rust are modeled on Attributes in ECMA-335, C#

32

• The doc attribute, for documenting code in-place.

• The cfg attribute, for conditional-compilation by build-configuration.

• The link attribute, for describing linkage metadata for a crate.

• The test attribute, for marking functions as unit tests.

Other attributes may be added or removed during development of the language.

7 Statements and expressions

Rust is primarily an expression language. This means that most forms of value-
producing or effect-causing evaluation are directed by the uniform syntax cat-
egory of expressions. Each kind of expression can typically nest within each
other kind of expression, and rules for evaluation of expressions involve spec-
ifying both the value produced by the expression and the order in which its
sub-expressions are themselves evaluated.

In contrast, statements in Rust serve mostly to contain and explicitly sequence
expression evaluation.

7.1 Statements

A statement is a component of a block, which is in turn a component of an
outer expression or function.

Rust has two kinds of statement: declaration statements and expression state-
ments.

7.1.1 Declaration statements

A declaration statement is one that introduces one or more names into the
enclosing statement block. The declared names may denote new slots or new
items.

Item declarations An item declaration statement has a syntactic form iden-
tical to an item declaration within a module. Declaring an item – a function,
enumeration, type, constant, trait, implementation or module – locally within
a statement block is simply a way of restricting its scope to a narrow region
containing all of its uses; it is otherwise identical in meaning to declaring the
item outside the statement block.

Note: there is no implicit capture of the function’s dynamic environment when
declaring a function-local item.

33

Slot declarations

let_decl : "let" pat [’:’ type] ? [init] ? ’;’ ;

init : [’=’ | ’<-’] expr ;

A slot declaration introduces a new set of slots, given by a pattern. The pattern
may be followed by a type annotation, and/or an initializer expression. When
no type annotation is given, the compiler will infer the type, or signal an error
if insufficient type information is available for definite inference. Any slots
introduced by a slot declaration are visible from the point of declaration until
the end of the enclosing block scope.

7.1.2 Expression statements

An expression statement is one that evaluates an expression and drops its result.
The purpose of an expression statement is often to cause the side effects of the
expression’s evaluation.

7.2 Expressions

An expression plays the dual roles of causing side effects and producing a value.
Expressions are said to evaluate to a value, and the side effects are caused
during evaluation. Many expressions contain sub-expressions as operands; the
definition of each kind of expression dictates whether or not, and in which order,
it will evaluate its sub-expressions, and how the expression’s value derives from
the value of its sub-expressions.

In this way, the structure of execution – both the overall sequence of observable
side effects and the final produced value – is dictated by the structure of ex-
pressions. Blocks themselves are expressions, so the nesting sequence of block,
statement, expression, and block can repeatedly nest to an arbitrary depth.

Lvalues, rvalues and temporaries Expressions are divided into two main
categories: lvalues and rvalues. Likewise within each expression, sub-expressions
may occur in lvalue context or rvalue context. The evaluation of an expression
depends both on its own category and the context it occurs within.

Path, field and index expressions are lvalues. All other expressions are rvalues.

The left operand of an assignment, binary move or compound-assignment ex-
pression is an lvalue context, as is the single operand of a unary borrow, or
move expression, and both operands of a swap expression. All other expression
contexts are rvalue contexts.

34

When an lvalue is evaluated in an lvalue context, it denotes a memory location;
when evaluated in an rvalue context, it denotes the value held in that memory
location.

When an rvalue is used in lvalue context, a temporary un-named lvalue is created
and used instead. A temporary’s lifetime equals the largest lifetime of any
borrowed pointer that points to it.

7.2.1 Literal expressions

A literal expression consists of one of the literal forms described earlier. It
directly describes a number, character, string, boolean value, or the unit value.

(); // unit type

"hello"; // string type

’5’; // character type

5; // integer type

7.2.2 Path expressions

A path used as an expression context denotes either a local variable or an item.
Path expressions are lvalues.

7.2.3 Tuple expressions

Tuples are written by enclosing two or more comma-separated expressions in
parentheses. They are used to create tuple-typed values.

(0f, 4.5f);

("a", 4u, true);

7.2.4 Record expressions

rec_expr : ’{’ ident ’:’ expr

[’,’ ident ’:’ expr] *

[".." expr] ’}’

A record expression is one or more comma-separated name-value pairs enclosed
by braces. A fieldname can be any identifier (including keywords), and is sepa-
rated from its value expression by a colon. To indicate that a field is mutable,
the mut keyword is written before its name.

35

{x: 10f, y: 20f};

{name: "Joe", age: 35u, score: 100_000};

{ident: "X", mut count: 0u};

The order of the fields in a record expression is significant, and determines the
type of the resulting value. {a: u8, b: u8} and {b: u8, a: u8} are two
different fields.

A record expression can terminate with the syntax .. followed by an expression
to denote a functional update. The expression following .. (the base) must be
of a record type that includes at least all the fields mentioned in the record ex-
pression. A new record will be created, of the same type as the base expression,
with the given values for the fields that were explicitly specified, and the values
in the base record for all other fields. The ordering of the fields in such a record
expression is not significant.

let base = {x: 1, y: 2, z: 3};

{y: 0, z: 10, .. base};

7.2.5 Method-call expressions

method_call_expr : expr ’.’ ident paren_expr_list ;

A method call consists of an expression followed by a single dot, an identifier,
and a parenthesized expression-list. Method calls are resolved to methods on
specific traits, either statically dispatching to a method if the exact self-type
of the left-hand-side is known, or dynamically dispatching if the left-hand-side
expression is an indirect trait type.

7.2.6 Field expressions

field_expr : expr ’.’ ident

A field expression consists of an expression followed by a single dot and an identi-
fier, when not immediately followed by a parenthesized expression-list (the latter
is a method call expression). A field expression denotes a field of a structure or
record.

myrecord.myfield;

{a: 10, b: 20}.a;

A field access on a record is an lvalue referring to the value of that field. When
the field is mutable, it can be assigned to.

When the type of the expression to the left of the dot is a pointer to a record
or structure, it is automatically derferenced to make the field access possible.

36

7.2.7 Vector expressions

vec_expr : ’[’ "mut" ? [expr [’,’ expr] *] ? ’]’

A vector expression is written by enclosing zero or more comma-separated ex-
pressions of uniform type in square brackets. The keyword mut can be written
after the opening bracket to indicate that the elements of the resulting vector
may be mutated. When no mutability is specified, the vector is immutable.

[1, 2, 3, 4];

["a", "b", "c", "d"];

[mut 0u8, 0u8, 0u8, 0u8];

7.2.8 Index expressions

idx_expr : expr ’[’ expr ’]’

Vector-typed expressions can be indexed by writing a square-bracket-enclosed
expression (the index) after them. When the vector is mutable, the resulting
lvalue can be assigned to.

Indices are zero-based, and may be of any integral type. Vector access is bounds-
checked at run-time. When the check fails, it will put the task in a failing state.

([1, 2, 3, 4])[0];

([mut ’x’, ’y’])[1] = ’z’;

(["a", "b"])[10]; // fails

7.2.9 Unary operator expressions

Rust defines six symbolic unary operators, in addition to the unary copy and
move operators. They are all written as prefix operators, before the expression
they apply to.

- Negation. May only be applied to numeric types.

* Dereference. When applied to a pointer it denotes the pointed-to location.
For pointers to mutable locations, the resulting lvalue can be assigned to.
For enums that have only a single variant, containing a single parameter,
the dereference operator accesses this parameter.

! Logical negation. On the boolean type, this flips between true and false.
On integer types, this inverts the individual bits in the two’s complement
representation of the value.

37

@ and ~ Boxing operators. Allocate a box to hold the value they are applied
to, and store the value in it. @ creates a managed box, whereas ~ creates
an owned box.

& Borrow operator. Returns a borrowed pointer, pointing to its operand. The
operand of a borrowed pointer is statically proven to outlive the resulting
pointer. If the borrow-checker cannot prove this, it is a compilation error.

7.2.10 Binary operator expressions

binop_expr : expr binop expr ;

Binary operators expressions are given in terms of operator precedence.

Arithmetic operators Binary arithmetic expressions are syntactic sugar for
calls to built-in traits, defined in the core::ops module of the core library.
This means that arithmetic operators can be overridden for user-defined types.
The default meaning of the operators on standard types is given here.

+ Addition and vector/string concatenation. Calls the add method on the
core::ops::Add trait.

- Subtraction. Calls the sub method on the core::ops::Sub trait.

* Multiplication. Calls the mul method on the core::ops::Mul trait.

/ Division. Calls the div method on the core::ops::Div trait.

% Modulo (a.k.a. “remainder”). Calls the modulo method on the
core::ops::Modulo trait.

Bitwise operators Bitwise operators are, like the arithmetic operators, syn-
tactic sugar for calls to built-in traits. This means that bitwise operators can
be overridden for user-defined types. The default meaning of the operators on
standard types is given here.

& And. Calls the bitand method on the core::ops::BitAnd trait.

| Inclusive or. Calls the bitor method on the core::ops::BitOr trait.

^ Exclusive or. Calls the bitxor method on the core::ops::BitXor trait.

<< Logical left shift. Calls the shl method on the core::ops::Shl trait.

>> Logical right shift. Calls the shr method on the core::ops::Shr trait.

38

Lazy boolean operators The operators || and && may be applied to operands
of boolean type. The first performs the ‘or’ operation, and the second the ‘and’
operation. They differ from | and & in that the right-hand operand is only
evaluated when the left-hand operand does not already determine the outcome
of the expression. That is, || only evaluates its right-hand operand when the
left-hand operand evaluates to false, and && only when it evaluates to true.

Comparison operators Comparison operators are, like the arithmetic op-
erators, and bitwise operators, syntactic sugar for calls to built-in traits. This
means that comparison operators can be overridden for user-defined types. The
default meaning of the operators on standard types is given here.

== Equal to. Calls the eq method on the core::cmp::Eq trait.

!= Unequal to. Calls the ne method on the core::cmp::Eq trait.

< Less than. Calls the lt method on the core::cmp::Ord trait.

> Greater than. Calls the gt method on the core::cmp::Ord trait.

<= Less than or equal. Calls the le method on the core::cmp::Ord trait.

>= Greater than or equal. Calls the ge method on the core::cmp::Ord trait.

Type cast expressions A type cast expression is denoted with the binary
operator as.

Executing an as expression casts the value on the left-hand side to the type on
the right-hand side.

A numeric value can be cast to any numeric type. A raw pointer value can
be cast to or from any integral type or raw pointer type. Any other cast is
unsupported and will fail to compile.

An example of an as expression:

fn avg(v: &[float]) -> float {

let sum: float = sum(v);

let sz: float = len(v) as float;

return sum / sz;

}

39

Binary move expressions A binary move expression consists of an lvalue
followed by a left-pointing arrow (<-) and an rvalue expression.

Evaluating a move expression causes, as a side effect, the rvalue to be moved
into the lvalue. If the rvalue was itself an lvalue, it must be a local variable, as
it will be de-initialized in the process.

Evaluating a move expression does not change reference counts, nor does it cause
a deep copy of any owned structure pointed to by the moved rvalue. Instead, the
move expression represents an indivisible transfer of ownership from the right-
hand-side to the left-hand-side of the expression. No allocation or destruction
is entailed.

An example of three different move expressions:

x <- a;

x[i] <- b;

y.z <- c;

Swap expressions A swap expression consists of an lvalue followed by a bi-
directional arrow (<->) and another lvalue.

Evaluating a swap expression causes, as a side effect, the values held in the
left-hand-side and right-hand-side lvalues to be exchanged indivisibly.

Evaluating a swap expression neither changes reference counts, nor deeply copies
any owned structure pointed to by the moved rvalue. Instead, the swap expres-
sion represents an indivisible exchange of ownership, between the right-hand-
side and the left-hand-side of the expression. No allocation or destruction is
entailed.

An example of three different swap expressions:

x <-> a;

x[i] <-> a[i];

y.z <-> b.c;

Assignment expressions An assignment expression consists of an lvalue
expression followed by an equals sign (=) and an rvalue expression.

Evaluating an assignment expression is equivalent to evaluating a binary move
expression applied to a unary copy expression. For example, the following two
expressions have the same effect:

x = y;

x <- copy y;

40

The former is just more terse and familiar.

Compound assignment expressions The +, -, *, /, %, &, |, ^, <<, and >>
operators may be composed with the = operator. The expression lval OP= val

is equivalent to lval = lval OP val. For example, x = x + 1 may be written
as x += 1.

Any such expression always has the unit type.

Operator precedence The precedence of Rust binary operators is ordered
as follows, going from strong to weak:

* / %

as

+ -

<< >>

&

^

|

< > <= >=

== !=

&&

||

= <- <->

Operators at the same precedence level are evaluated left-to-right.

7.2.11 Grouped expressions

An expression enclosed in parentheses evaluates to the result of the enclosed
expression. Parentheses can be used to explicitly specify evaluation order within
an expression.

paren_expr : ’(’ expr ’)’ ;

An example of a parenthesized expression:

let x = (2 + 3) * 4;

41

7.2.12 Unary copy expressions

copy_expr : "copy" expr ;

A unary copy expression consists of the unary copy operator applied to some
argument expression.

Evaluating a copy expression first evaluates the argument expression, then
copies the resulting value, allocating any memory necessary to hold the new
copy.

Managed boxes (type @) are, as usual, shallow-copied, as are raw and borrowed
pointers. Owned boxes, owned vectors and similar owned types are deep-copied.

Since the binary assignment operator = performs a copy implicitly, the unary
copy operator is typically only used to cause an argument to a function to be
copied and passed by value.

An example of a copy expression:

fn mutate(vec: ~[mut int]) {

vec[0] = 10;

}

let v = ~[mut 1,2,3];

mutate(copy v); // Pass a copy

assert v[0] == 1; // Original was not modified

7.2.13 Unary move expressions

move_expr : "move" expr ;

A unary move expression is similar to a unary copy expression, except that
it can only be applied to an lvalue, and it performs a move on its operand,
rather than a copy. That is, the memory location denoted by its operand is
de-initialized after evaluation, and the resulting value is a shallow copy of the
operand, even if the operand is an owning type.

7.2.14 Call expressions

expr_list : [expr [’,’ expr]*] ? ;

paren_expr_list : ’(’ expr_list ’)’ ;

call_expr : expr paren_expr_list ;

42

A call expression invokes a function, providing zero or more input slots and
an optional reference slot to serve as the function’s output, bound to the lval

on the right hand side of the call. If the function eventually returns, then the
expression completes.

An example of a call expression:

let x: int = add(1, 2);

7.2.15 Lambda expressions

ident_list : [ident [’,’ ident]*] ? ;

lambda_expr : ’|’ ident_list ’| expr ;

A lambda expression (a.k.a. “anonymous function expression”) defines a func-
tion and denotes it as a value, in a single expression. Lambda expressions are
written by prepending a list of identifiers, surrounded by pipe symbols (|), to
an expression.

A lambda expression denotes a function mapping parameters to the expres-
sion to the right of the ident list. The identifiers in the ident list are the
parameters to the function, with types inferred from context.

Lambda expressions are most useful when passing functions as arguments to
other functions, as an abbreviation for defining and capturing a separate fucn-
tion.

Significantly, lambda expressions capture their environment, which regular func-
tion definitions do not.

The exact type of capture depends on the function type inferred for the lambda
expression; in the simplest and least-expensive form, the environment is cap-
tured by reference, effectively borrowing pointers to all outer variables referenced
inside the function. Other forms of capture include making copies of captured
variables, and moving values from the environment into the lambda expression’s
captured environment.

An example of a lambda expression:

fn ten_times(f: fn(int)) {

let mut i = 0;

while i < 10 {

f(i);

i += 1;

}

}

ten_times(|j| io::println(fmt!("hello, %d", j)));

43

7.2.16 While loops

while_expr : "while" expr ’{’ block ’}’ ;

A while loop begins by evaluating the boolean loop conditional expression. If
the loop conditional expression evaluates to true, the loop body block executes
and control returns to the loop conditional expression. If the loop conditional
expression evaluates to false, the while expression completes.

An example:

let mut i = 0;

while i < 10 {

io::println("hello\n");

i = i + 1;

}

7.2.17 Infinite loops

A loop expression denotes an infinite loop:

loop_expr : "loop" ’{’ block ’}’;

7.2.18 Break expressions

break_expr : "break" ;

Executing a break expression immediately terminates the innermost loop en-
closing it. It is only permitted in the body of a loop.

7.2.19 Loop expressions

loop_expr : "loop" ;

Evaluating a loop expression immediately terminates the current iteration of
the innermost loop enclosing it, returning control to the loop head. In the case
of a while loop, the head is the conditional expression controlling the loop. In
the case of a for loop, the head is the call-expression controlling the loop.

A loop expression is only permitted in the body of a loop.

44

7.2.20 Do expressions

do_expr : "do" expr [’|’ ident_list ’|’] ? ’{’ block ’}’ ;

A do expression provides a more-familiar block-syntax for a lambda expression,
including a special translation of return expressions inside the supplied block.

The optional ident list and block provided in a do expression are parsed as
though they constitute a lambda expression; if the ident list is missing, an
empty ident list is implied.

The lambda expression is then provided as a trailing argument to the outermost
call or method call expression in the expr following do. If the expr is a path
expression, it is parsed as though it is a call expression. If the expr is a field
expression, it is parsed as though it is a method call expression.

In this example, both calls to f are equivalent:

f(|j| g(j));

do f |j| {

g(j);

}

7.2.21 For expressions

for_expr : "for" expr [’|’ ident_list ’|’] ? ’{’ block ’}’ ;

A for expression is similar to a do expression, in that it provides a special
block-form of lambda expression, suited to passing the block function to a
higher-order function implementing a loop.

Like a do expression, a return expression inside a for expresison is rewritten,
to access a local flag that causes an early return in the caller.

Additionally, any occurrence of a return expression inside the block of a for

expression is rewritten as a reference to an (anonymous) flag set in the caller’s
environment, which is checked on return from the expr and, if set, causes a
corresponding return from the caller. In this way, the meaning of return state-
ments in language built-in control blocks is preserved, if they are rewritten using
lambda functions and do expressions as abstractions.

Like return expressions, any break and loop expressions are rewritten inside
for expressions, with a combination of local flag variables, and early boolean-
valued returns from the block function, such that the meaning of break and
loop is preserved in a primitive loop when rewritten as a for loop controlled
by a higher order function.

45

An example a for loop:

let v: &[foo] = &[a, b, c];

for v.each |e| {

bar(*e);

}

7.2.22 If expressions

if_expr : "if" expr ’{’ block ’}’

else_tail ? ;

else_tail : "else" [if_expr

| ’{’ block ’}’] ;

An if expression is a conditional branch in program control. The form of an if

expression is a condition expression, followed by a consequent block, any number
of else if conditions and blocks, and an optional trailing else block. The
condition expressions must have type bool. If a condition expression evaluates
to true, the consequent block is executed and any subsequent else if or else
block is skipped. If a condition expression evaluates to false, the consequent
block is skipped and any subsequent else if condition is evaluated. If all if
and else if conditions evaluate to false then any else block is executed.

7.2.23 Match expressions

match_expr : "match" expr ’{’ match_arm [’|’ match_arm] * ’}’ ;

match_arm : match_pat ’=>’ [expr "," | ’{’ block ’}’] ;

match_pat : pat [".." pat] ? ["if" expr] ;

A match expression branches on a pattern. The exact form of matching that
occurs depends on the pattern. Patterns consist of some combination of literals,
destructured enum constructors, structures, records and tuples, variable binding
specifications, wildcards (*), and placeholders (). A match expression has a
head expression, which is the value to compare to the patterns. The type of the
patterns must equal the type of the head expression.

In a pattern whose head expression has an enum type, a placeholder () stands for
a single data field, whereas a wildcard * stands for all the fields of a particular
variant. For example:

46

enum List<X> { Nil, Cons(X, @List<X>) }

let x: List<int> = Cons(10, @Cons(11, @Nil));

match x {

Cons(_, @Nil) => fail ~"singleton list",

Cons(*) => return,

Nil => fail ~"empty list"

}

The first pattern matches lists constructed by applying Cons to any head value,
and a tail value of @Nil. The second pattern matches any list constructed with
Cons, ignoring the values of its arguments. The difference between and * is
that the pattern C() is only type-correct if C has exactly one argument, while
the pattern C(*) is type-correct for any enum variant C, regardless of how many
arguments C has.

To execute an match expression, first the head expression is evaluated, then
its value is sequentially compared to the patterns in the arms until a match is
found. The first arm with a matching pattern is chosen as the branch target of
the match, any variables bound by the pattern are assigned to local variables in
the arm’s block, and control enters the block.

An example of an match expression:

enum List<X> { Nil, Cons(X, @List<X>) }

let x: List<int> = Cons(10, @Cons(11, @Nil));

match x {

Cons(a, @Cons(b, _)) => {

process_pair(a,b);

}

Cons(10, _) => {

process_ten();

}

Nil => {

return;

}

_ => {

fail;

}

}

Records and structures can also be pattern-matched and their fields bound
to variables. When matching fields of a record, the fields being matched are

47

specified first, then a placeholder () represents the remaining fields.

fn main() {

let r = {

player: ~"ralph",

stats: load_stats(),

options: {

choose: true,

size: ~"small"

}

};

match r {

{options: {choose: true, _}, _} => {

choose_player(r)

}

{player: p, options: {size: ~"small", _}, _} => {

log(info, p + ~" is small");

}

_ => {

next_player();

}

}

}

Multiple match patterns may be joined with the | operator. A range of values
may be specified with ... For example:

let message = match x {

0 | 1 => "not many",

2 .. 9 => "a few",

_ => "lots"

};

Finally, match patterns can accept pattern guards to further refine the criteria
for matching a case. Pattern guards appear after the pattern and consist of a
bool-typed expression following the if keyword. A pattern guard may refer to
the variables bound within the pattern they follow.

let message = match maybe_digit {

Some(x) if x < 10 => process_digit(x),

48

Some(x) => process_other(x),

None => fail

};

7.2.24 Fail expressions

fail_expr : "fail" expr ? ;

Evaluating a fail expression causes a task to enter the failing state. In the
failing state, a task unwinds its stack, destroying all frames and running all
destructors until it reaches its entry frame, at which point it halts execution in
the dead state.

7.2.25 Return expressions

return_expr : "return" expr ? ;

Return expressions are denoted with the keyword return. Evaluating a return

expression moves its argument into the output slot of the current function,
destroys the current function activation frame, and transfers control to the caller
frame.

An example of a return expression:

fn max(a: int, b: int) -> int {

if a > b {

return a;

}

return b;

}

7.2.26 Log expressions

log_expr : "log" ’(’ level ’,’ expr ’)’ ;

Evaluating a log expression may, depending on runtime configuration, cause a
value to be appended to an internal diagnostic logging buffer provided by the
runtime or emitted to a system console. Log expressions are enabled or disabled
dynamically at run-time on a per-task and per-item basis. See logging system.

Each log expression must be provided with a level argument in addition to
the value to log. The logging level is a u32 value, where lower levels indicate
more-urgent levels of logging. By default, the lowest four logging levels (0 u32

49

... 3 u32) are predefined as the constants error, warn, info and debug in
the core library.

Additionally, the macros error!, warn!, info! and debug! are defined in
the default syntax-extension namespace. These expand into calls to the logging
facility composed with calls to the fmt! string formatting syntax-extension.

The following examples all produce the same output, logged at the error logging
level:

// Full version, logging a value.

log(core::error, ~"file not found: " + filename);

// Log-level abbreviated, since core::* is used by default.

log(error, ~"file not found: " + filename);

// Formatting the message using a format-string and fmt!

log(error, fmt!("file not found: %s", filename));

// Using the error! macro, that expands to the previous call.

error!("file not found: %s", filename);

A log expression is not evaluated when logging at the specified logging-level,
module or task is disabled at runtime. This makes inactive log expressions very
cheap; they should be used extensively in Rust code, as diagnostic aids, as they
add little overhead beyond a single integer-compare and branch at runtime.

Logging is presently implemented as a language built-in feature, as it makes use
of compiler-provided, per-module data tables and flags. In the future, logging
will move into a library, and will no longer be a core expression type. It is
therefore recommended to use the macro forms of logging (error!, debug!,
etc.) to minimize disruption in code that uses logging.

7.2.27 Assert expressions

assert_expr : "assert" expr ;

Note: In future versions of Rust, assert will be changed from a
full expression to a macro.

An assert expression causes the program to fail if its expr argument evaluates
to false. The failure carries string representation of the false expression.

50

8 Type system

8.1 Types

Every slot, item and value in a Rust program has a type. The type of a value
defines the interpretation of the memory holding it.

Built-in types and type-constructors are tightly integrated into the language,
in nontrivial ways that are not possible to emulate in user-defined types. User-
defined types have limited capabilities.

8.1.1 Primitive types

The primitive types are the following:

• The “unit” type (), having the single “unit” value () (occasionally called
“nil”). 4

• The boolean type bool with values true and false.

• The machine types.

• The machine-dependent integer and floating-point types.

Machine types The machine types are the following:

• The unsigned word types u8, u16, u32 and u64, with values drawn from
the integer intervals [0, 28 − 1], [0, 216 − 1], [0, 232 − 1] and [0, 264 − 1]
respectively.

• The signed two’s complement word types i8, i16, i32 and i64, with
values drawn from the integer intervals [−(27), 27 − 1], [−(215), 215 − 1],
[−(231), 231 − 1], [−(263), 263 − 1] respectively.

• The IEEE 754-2008 binary32 and binary64 floating-point types: f32 and
f64, respectively.

4The “unit” value () is not a sentinel “null pointer” value for reference slots; the “unit”
type is the implicit return type from functions otherwise lacking a return type, and can be
used in other contexts (such as message-sending or type-parametric code) as a zero-size type.

51

Machine-dependent integer types The Rust type uint5 is an unsigned
integer type with target-machine-dependent size. Its size, in bits, is equal to
the number of bits required to hold any memory address on the target machine.

The Rust type int6 is a two’s complement signed integer type with target-
machine-dependent size. Its size, in bits, is equal to the size of the rust type
uint on the same target machine.

Machine-dependent floating point type The Rust type float is a
machine-specific type equal to one of the supported Rust floating-point
machine types (f32 or f64). It is the largest floating-point type that is directly
supported by hardware on the target machine, or if the target machine has
no floating-point hardware support, the largest floating-point type supported
by the software floating-point library used to support the other floating-point
machine types.

Note that due to the preference for hardware-supported floating-point, the type
float may not be equal to the largest supported floating-point type.

8.1.2 Textual types

The types char and str hold textual data.

A value of type char is a Unicode character, represented as a 32-bit unsigned
word holding a UCS-4 codepoint.

A value of type str is a Unicode string, represented as a vector of 8-bit unsigned
bytes holding a sequence of UTF-8 codepoints. Since str is of indefinite size,
it is not a first class type, but can only be instantiated through a pointer type,
such as &str, @str or ~str.

8.1.3 Tuple types

The tuple type-constructor forms a new heterogeneous product of values similar
to the record type-constructor. The differences are as follows:

• tuple elements cannot be mutable, unlike record fields

• tuple elements are not named and can be accessed only by pattern-
matching

Tuple types and values are denoted by listing the types or values of their el-
ements, respectively, in a parenthesized, comma-separated list. Single-element
tuples are not legal; all tuples have two or more values.

5A Rust uint is analogous to a C99 uintptr t.
6A Rust int is analogous to a C99 intptr t.

52

The members of a tuple are laid out in memory contiguously, like a record, in
order specified by the tuple type.

An example of a tuple type and its use:

type Pair = (int,&str);

let p: Pair = (10,"hello");

let (a, b) = p;

assert b != "world";

8.1.4 Vector types

The vector type-constructor represents a homogeneous array of values of a given
type. A vector has a fixed size. A vector type can be accompanied by definite
size, written with a trailing asterisk and integer literal, such as [int * 10].
Such a definite-sized vector can be treated as a first class type since its size is
known statically. A vector without such a size is said to be of indefinite size,
and is therefore not a first class type, can only be instantiated through a pointer
type, such as &[T], @[T] or ~[T]. The kind of a vector type depends on the
kind of its member type, as with other simple structural types.

An example of a vector type and its use:

let v: &[int] = &[7, 5, 3];

let i: int = v[2];

assert (i == 3);

All accessible elements of a vector are always initialized, and access to a vector
is always bounds-checked. In the case of a definite-

8.1.5 Structure types

A struct type is a heterogeneous product of other types, called the fields of the
type. 7

New instances of a struct can be constructed with a struct expression.

The memory order of fields in a struct is given by the item defining it. Fields
may be given in any order in a corresponding struct expression; the resulting
struct value will always be laid out in memory in the order specified by the
corresponding item.

The fields of a struct may be qualified by visibility modifiers, to restrict access
to implementation-private data in a structure.

7struct types are analogous struct types in C, the record types of the ML family, or the
structure types of the Lisp family.

53

8.1.6 Enumerated types

An enumerated type is a nominal, heterogeneous disjoint union type, denoted
by the name of an enum item. 8

An enum item declares both the type and a number of variant constructors, each
of which is independently named and takes an optional tuple of arguments.

New instances of an enum can be constructed by calling one of the variant
constructors, in a call expression.

Any enum value consumes as much memory as the largest variant constructor
for its corresponding enum type.

Enum types cannot be denoted structurally as types, but must be denoted by
named reference to an enum item.

8.1.7 Recursive types

Nominal types – enumerations and structures – may be recursive. That is,
each enum constructor or struct field may refer, directly or indirectly, to the
enclosing enum or struct type itself. Such recursion has restrictions:

• Recursive types must include a nominal type in the recursion (not mere
type definitions, or other structural types such as vectors or tuples).

• A recursive enum item must have at least one non-recursive constructor
(in order to give the recursion a basis case).

• The size of a recursive type must be finite; in other words the recursive
fields of the type must be pointer types.

• Recursive type definitions can cross module boundaries, but not module
visibility boundaries, or crate boundaries (in order to simplify the module
system and type checker).

An example of a recursive type and its use:

enum List<T> {

Nil,

Cons(T, @List<T>)

}

let a: List<int> = Cons(7, @Cons(13, @Nil));

8The enum type is analogous to a data constructor declaration in ML, or a pick ADT in
Limbo.

54

8.1.8 Record types

Note: Records are not nominal types, thus do not directly support
recursion, visibility control, out-of-order field initialization, or co-
herent trait implementation. Records are therefore deprecared and
will be removed in future versions of Rust. Structure types should
be used instead.

The record type-constructor forms a new heterogeneous product of values.
Fields of a record type are accessed by name and are arranged in memory in
the order specified by the record type.

An example of a record type and its use:

type Point = {x: int, y: int};

let p: Point = {x: 10, y: 11};

let px: int = p.x;

8.1.9 Pointer types

All pointers in Rust are explicit first-class values. They can be copied, stored
into data structures, and returned from functions. There are four varieties of
pointer in Rust:

Managed pointers (@) These point to managed heap allocations (or “boxes”)
in the task-local, managed heap. Managed pointers are written @content,
for example @int means a managed pointer to a managed box contain-
ing an integer. Copying a managed pointer is a “shallow” operation: it
involves only copying the pointer itself (as well as any reference-count or
GC-barriers required by the managed heap). Dropping a managed pointer
does not necessarily release the box it points to; the lifecycles of managed
boxes are subject to an unspecified garbage collection algorithm.

Owning pointers (~) These point to owned heap allocations (or “boxes”) in
the shared, inter-task heap. Each owned box has a single owning pointer;
pointer and pointee retain a 1:1 relationship at all times. Owning pointers
are written ~content, for example ~int means an owning pointer to an
owned box containing an integer. Copying an owned box is a “deep”
operation: it involves allocating a new owned box and copying the contents
of the old box into the new box. Releasing an owning pointer immediately
releases its corresponding owned box.

Borrowed pointers (&) These point to memory owned by some other value.
Borrowed pointers arise by (automatic) conversion from owning pointers,
managed pointers, or by applying the borrowing operator & to some other

55

value, including lvalues, rvalues or temporaries. Borrowed pointers are
written &content, or in some cases &f/content for some lifetime-variable
f, for example &int means a borrowed pointer to an integer. Copying a
borrowed pointer is a “shallow” operation: it involves only copying the
pointer itself. Releasing a borrowed pointer typically has no effect on
the value it points to, with the exception of temporary values, which are
released when the last borrowed pointer to them is released.

Raw pointers (*) Raw pointers are pointers without safety or liveness guar-
antees. Raw pointers are written *content, for example *int means a raw
pointer to an integer. Copying or dropping a raw pointer is has no effect
on the lifecycle of any other value. Dereferencing a raw pointer or convert-
ing it to any other pointer type is an unsafe operation. Raw pointers are
generally discouraged in Rust code; they exist to support interoperability
with foreign code, and writing performance-critical or low-level functions.

8.1.10 Function types

The function type-constructor fn forms new function types. A function type
consists of a set of function-type modifiers (pure, unsafe, extern, etc.), a
sequence of input slots and an output slot.

An example of a fn type:

fn add(x: int, y: int) -> int {

return x + y;

}

let mut x = add(5,7);

type Binop = fn(int,int) -> int;

let bo: Binop = add;

x = bo(5,7);

8.1.11 Trait types

Every trait item (see traits) defines a type with the same name as the trait. For
a trait T, cast expressions introduce values of type T:

trait Printable {

fn to_str() -> ~str;

}

impl int: Printable {

fn to_str() -> ~str { int::to_str(self, 10) }

56

}

fn print(a: @Printable) {

io::println(a.to_str());

}

fn main() {

print(@10 as @Printable);

}

In this example, the trait Printable occurs as a type in both the type signature
of print, and the cast expression in main.

8.1.12 Type parameters

Within the body of an item that has type parameter declarations, the names of
its type parameters are types:

fn map<A: Copy, B: Copy>(f: fn(A) -> B, xs: &[A]) -> ~[B] {

if xs.len() == 0 { return ~[]; }

let first: B = f(xs[0]);

let rest: ~[B] = map(f, xs.slice(1, xs.len()));

return ~[first] + rest;

}

Here, first has type B, referring to map’s B type parameter; and rest has type
~[B], a vector type with element type B.

8.1.13 Self types

The special type self has a meaning within methods inside an impl item. It
refers to the type of the implicit self argument. For example, in:

trait Printable {

fn to_str() -> ~str;

}

impl ~str: Printable {

fn to_str() -> ~str { self }

}

self refers to the value of type ~str that is the receiver for a call to the method
to str.

57

8.2 Type kinds

Types in Rust are categorized into kinds, based on various properties of the
components of the type. The kinds are:

Const Types of this kind are deeply immutable; they contain no mutable mem-
ory locations directly or indirectly via pointers.

Send Types of this kind can be safely sent between tasks. This kind includes
scalars, owning pointers, owned closures, and structural types containing
only other sendable types.

Owned Types of this kind do not contain any borrowed pointers; this can be
a useful guarantee for code that breaks borrowing assumptions using
unsafe operations.

Copy This kind includes all types that can be copied. All types with sendable
kind are copyable, as are managed boxes, managed closures, trait types,
and structural types built out of these.

Default Types with destructors, closure environments, and various other non-
first-class types, are not copyable at all. Such types can usually only
be accessed through pointers, or in some cases, moved between mutable
locations.

Kinds can be supplied as bounds on type parameters, like traits, in which case
the parameter is constrained to types satisfying that kind.

By default, type parameters do not carry any assumed kind-bounds at all.

Any operation that causes a value to be copied requires the type of that value
to be of copyable kind, so the Copy bound is frequently required on function
type parameters. For example, this is not a valid program:

fn box<T>(x: T) -> @T { @x }

Putting x into a managed box involves copying, and the T parameter has the
default (non-copyable) kind. To change that, a bound is declared:

fn box<T: Copy>(x: T) -> @T { @x }

Calling this second version of box on a noncopyable type is not allowed. When
instantiating a type parameter, the kind bounds on the parameter are checked
to be the same or narrower than the kind of the type that it is instantiated with.

Sending operations are not part of the Rust language, but are implemented in
the library. Generic functions that send values bound the kind of these values
to sendable.

58

9 Memory and concurrency models

Rust has a memory model centered around concurrently-executing tasks. Thus
its memory model and its concurrency model are best discussed simultaneously,
as parts of each only make sense when considered from the perspective of the
other.

When reading about the memory model, keep in mind that it is partitioned in
order to support tasks; and when reading about tasks, keep in mind that their
isolation and communication mechanisms are only possible due to the ownership
and lifetime semantics of the memory model.

9.1 Memory model

A Rust program’s memory consists of a static set of items, a set of tasks each
with its own stack, and a heap. Immutable portions of the heap may be shared
between tasks, mutable portions may not.

Allocations in the stack consist of slots, and allocations in the heap consist of
boxes.

9.1.1 Memory allocation and lifetime

The items of a program are those functions, modules and types that have their
value calculated at compile-time and stored uniquely in the memory image of
the rust process. Items are neither dynamically allocated nor freed.

A task’s stack consists of activation frames automatically allocated on entry to
each function as the task executes. A stack allocation is reclaimed when control
leaves the frame containing it.

The heap is a general term that describes two separate sets of boxes: managed
boxes – which may be subject to garbage collection – and owned boxes. The
lifetime of an allocation in the heap depends on the lifetime of the box values
pointing to it. Since box values may themselves be passed in and out of frames,
or stored in the heap, heap allocations may outlive the frame they are allocated
within.

9.1.2 Memory ownership

A task owns all memory it can safely reach through local variables, as well as
managed, owning and borrowed pointers.

When a task sends a value that has the Send trait to another task, it loses
ownership of the value sent and can no longer refer to it. This is statically
guaranteed by the combined use of “move semantics”, and the compiler-checked

59

meaning of the Send trait: it is only instantiated for (transitively) sendable kinds
of data constructor and pointers, never including managed or borrowed pointers.

When a stack frame is exited, its local allocations are all released, and its ref-
erences to boxes (both managed and owned) are dropped.

A managed box may (in the case of a recursive, mutable managed type) be
cyclic; in this case the release of memory inside the managed structure may be
deferred until task-local garbage collection can reclaim it. Code can ensure no
such delayed deallocation occurs by restricting itself to owned boxes and similar
unmanaged kinds of data.

When a task finishes, its stack is necessarily empty and it therefore has no
references to any boxes; the remainder of its heap is immediately freed.

9.1.3 Memory slots

A task’s stack contains slots.

A slot is a component of a stack frame, either a function parameter, a temporary,
or a local variable.

A local variable (or stack-local allocation) holds a value directly, allocated within
the stack’s memory. The value is a part of the stack frame.

Local variables are immutable unless declared with let mut. The mut keyword
applies to all local variables declared within that declaration (so let mut x, y

declares two mutable variables, x and y).

Local variables are not initialized when allocated; the entire frame worth of
local variables are allocated at once, on frame-entry, in an uninitialized state.
Subsequent statements within a function may or may not initialize the local
variables. Local variables can be used only after they have been initialized; this
is enforced by the compiler.

9.1.4 Memory boxes

A box is a reference to a heap allocation holding another value. There are two
kinds of boxes: managed boxes and owned boxes.

A managed box type or value is constructed by the prefix at sigil @.

An owned box type or value is constructed by the prefix tilde sigil ~.

Multiple managed box values can point to the same heap allocation; copying a
managed box value makes a shallow copy of the pointer (optionally increment-
ing a reference count, if the managed box is implemented through reference-
counting).

60

Owned box values exist in 1:1 correspondence with their heap allocation; copying
an owned box value makes a deep copy of the heap allocation and produces a
pointer to the new allocation.

An example of constructing one managed box type and value, and one owned
box type and value:

let x: @int = @10;

let x: ~int = ~10;

Some operations (such as field selection) implicitly dereference boxes. An ex-
ample of an implicit dereference operation performed on box values:

let x = @{y: 10};

assert x.y == 10;

Other operations act on box values as single-word-sized address values. For these
operations, to access the value held in the box requires an explicit dereference
of the box value. Explicitly dereferencing a box is indicated with the unary star
operator *. Examples of such explicit dereference operations are:

• copying box values (x = y)

• passing box values to functions (f(x,y))

An example of an explicit-dereference operation performed on box values:

fn takes_boxed(b: @int) {

}

fn takes_unboxed(b: int) {

}

fn main() {

let x: @int = @10;

takes_boxed(x);

takes_unboxed(*x);

}

9.2 Tasks

An executing Rust program consists of a tree of tasks. A Rust task consists
of an entry function, a stack, a set of outgoing communication channels and

61

incoming communication ports, and ownership of some portion of the heap of a
single operating-system process.

Multiple Rust tasks may coexist in a single operating-system process. The
runtime scheduler maps tasks to a certain number of operating-system threads;
by default a number of threads is used based on the number of concurrent
physical CPUs detected at startup, but this can be changed dynamically at
runtime. When the number of tasks exceeds the number of threads – which is
quite possible – the tasks are multiplexed onto the threads 9

9.2.1 Communication between tasks

Rust tasks are isolated and generally unable to interfere with one another’s
memory directly, except through unsafe code. All contact between tasks is
mediated by safe forms of ownership transfer, and data races on memory are
prohibited by the type system.

Inter-task communication and co-ordination facilities are provided in the stan-
dard library. These include:

• synchronous and asynchronous communication channels with various com-
munication topologies

• read-only and read-write shared variables with various safe mutual exclu-
sion patterns

• simple locks and semaphores

When such facilities carry values, the values are restricted to the Send type-kind.
Restricting communication interfaces to this kind ensures that no borrowed or
managed pointers move between tasks. Thus access to an entire data structure
can be mediated through its owning “root” value; no further locking or copying
is required to avoid data races within the substructure of such a value.

9.2.2 Task lifecycle

The lifecycle of a task consists of a finite set of states and events that cause
transitions between the states. The lifecycle states of a task are:

• running

9This is an M:N scheduler, which is known to give suboptimal results for CPU-bound
concurrency problems. In such cases, running with the same number of threads as tasks can
give better results. The M:N scheduling in Rust exists to support very large numbers of
tasks in contexts where threads are too resource-intensive to use in a similar volume. The
cost of threads varies substantially per operating system, and is sometimes quite low, so this
flexibility is not always worth exploiting.

62

• blocked

• failing

• dead

A task begins its lifecycle – once it has been spawned – in the running state.
In this state it executes the statements of its entry function, and any functions
called by the entry function.

A task may transition from the running state to the blocked state any time it
makes a blocking communication call. When the call can be completed – when
a message arrives at a sender, or a buffer opens to receive a message – then the
blocked task will unblock and transition back to running.

A task may transition to the failing state at any time, due being killed by some
external event or internally, from the evaluation of a fail expression. Once
failing, a task unwinds its stack and transitions to the dead state. Unwinding
the stack of a task is done by the task itself, on its own control stack. If a
value with a destructor is freed during unwinding, the code for the destructor
is run, also on the task’s control stack. Running the destructor code causes a
temporary transition to a running state, and allows the destructor code to cause
any subsequent state transitions. The original task of unwinding and failing
thereby may suspend temporarily, and may involve (recursive) unwinding of the
stack of a failed destructor. Nonetheless, the outermost unwinding activity will
continue until the stack is unwound and the task transitions to the dead state.
There is no way to “recover” from task failure. Once a task has temporarily
suspended its unwinding in the failing state, failure occurring from within this
destructor results in hard failure. The unwinding procedure of hard failure frees
resources but does not execute destructors. The original (soft) failure is still
resumed at the point where it was temporarily suspended.

A task in the dead state cannot transition to other states; it exists only to have
its termination status inspected by other tasks, and/or to await reclamation
when the last reference to it drops.

9.2.3 Task scheduling

The currently scheduled task is given a finite time slice in which to execute,
after which it is descheduled at a loop-edge or similar preemption point, and
another task within is scheduled, pseudo-randomly.

An executing task can yield control at any time, by making a library call to
core::task::yield, which deschedules it immediately. Entering any other
non-executing state (blocked, dead) similarly deschedules the task.

63

9.2.4 Spawning tasks

A call to core::task::spawn, passing a 0-argument function as its single argu-
ment, causes the runtime to construct a new task executing the passed function.
The passed function is referred to as the entry function for the spawned task,
and any captured environment it carries is moved from the spawning task to
the spawned task before the spawned task begins execution.

The result of a spawn call is a core::task::Task value.

An example of a spawn call:

let po = comm::Port();

let ch = comm::Chan(&po);

do task::spawn {

// let task run, do other things

...

comm::send(ch, true);

};

let result = comm::recv(po);

9.2.5 Sending values into channels

Sending a value into a channel is done by a library call to core::comm::send,
which takes a channel and a value to send, and moves the value into the channel’s
outgoing buffer.

An example of a send:

let po = comm::Port();

let ch = comm::Chan(&po);

comm::send(ch, ~"hello, world");

9.2.6 Receiving values from ports

Receiving a value is done by a call to the recv method on a value of type
core::comm::Port. This call causes the receiving task to enter the blocked
reading state until a value arrives in the port’s receive queue, at which time the
port deques a value to return, and un-blocks the receiving task.

An example of a receive:

let s = comm::recv(po);

Note: this communication system will be replaced by a higher-
performance system called “pipes”, in future versions of Rust.

64

10 Runtime services, linkage and debugging

The Rust runtime is a relatively compact collection of C++ and Rust code
that provides fundamental services and datatypes to all Rust tasks at run-time.
It is smaller and simpler than many modern language runtimes. It is tightly
integrated into the language’s execution model of memory, tasks, communication
and logging.

Note: The runtime library will merge with the core library in future
versions of Rust.

10.0.7 Memory allocation

The runtime memory-management system is based on a service-provider inter-
face, through which the runtime requests blocks of memory from its environment
and releases them back to its environment when they are no longer in use. The
default implementation of the service-provider interface consists of the C run-
time functions malloc and free.

The runtime memory-management system in turn supplies Rust tasks with fa-
cilities for allocating, extending and releasing stacks, as well as allocating and
freeing boxed values.

10.0.8 Built in types

The runtime provides C and Rust code to assist with various built-in types, such
as vectors, strings, and the low level communication system (ports, channels,
tasks).

Support for other built-in types such as simple types, tuples, records, and enums
is open-coded by the Rust compiler.

10.0.9 Task scheduling and communication

The runtime provides code to manage inter-task communication. This includes
the system of task-lifecycle state transitions depending on the contents of queues,
as well as code to copy values between queues and their recipients and to serial-
ize values for transmission over operating-system inter-process communication
facilities.

10.0.10 Logging system

The runtime contains a system for directing logging expressions to a logging
console and/or internal logging buffers. Logging expressions can be enabled per
module.

65

Logging output is enabled by setting the RUST LOG environment variable.
RUST LOG accepts a logging specification made up of a comma-separated list of
paths, with optional log levels. For each module containing log expressions, if
RUST LOG contains the path to that module or a parent of that module, then
logs of the appropriate level will be output to the console.

The path to a module consists of the crate name, any parent modules, then the
module itself, all separated by double colons (::). The optional log level can
be appended to the module path with an equals sign (=) followed by the log
level, from 0 to 3, inclusive. Level 0 is the error level, 1 is warning, 2 info, and
3 debug. Any logs less than or equal to the specified level will be output. If not
specified then log level 3 is assumed.

As an example, to see all the logs generated by the compiler, you would
set RUST LOG to rustc, which is the crate name (as specified in its link

attribute). To narrow down the logs to just crate resolution, you would set it
to rustc::metadata::creader. To see just error logging use rustc=0.

Note that when compiling either .rs or .rc files that don’t specify a crate
name the crate is given a default name that matches the source file, with the
extension removed. In that case, to turn on logging for a program compiled
from, e.g. helloworld.rs, RUST LOG should be set to helloworld.

As a convenience, the logging spec can also be set to a special psuedo-crate,
::help. In this case, when the application starts, the runtime will simply
output a list of loaded modules containing log expressions, then exit.

The Rust runtime itself generates logging information. The runtime’s logs are
generated for a number of artificial modules in the ::rt psuedo-crate, and can
be enabled just like the logs for any standard module. The full list of runtime
logging modules follows.

• ::rt::mem Memory management

• ::rt::comm Messaging and task communication

• ::rt::task Task management

• ::rt::dom Task scheduling

• ::rt::trace Unused

• ::rt::cache Type descriptor cache

• ::rt::upcall Compiler-generated runtime calls

• ::rt::timer The scheduler timer

• ::rt::gc Garbage collection

• ::rt::stdlib Functions used directly by the standard library

66

• ::rt::kern The runtime kernel

• ::rt::backtrace Log a backtrace on task failure

• ::rt::callback Unused

11 Appendix: Rationales and design tradeoffs

TODO.

12 Appendix: Influences and further references

12.1 Influences

The essential problem that must be solved in making a fault-tolerant
software system is therefore that of fault-isolation. Different pro-
grammers will write different modules, some modules will be correct,
others will have errors. We do not want the errors in one module to
adversely affect the behaviour of a module which does not have any
errors.

— Joe Armstrong

In our approach, all data is private to some process, and processes
can only communicate through communications channels. Security,
as used in this paper, is the property which guarantees that processes
in a system cannot affect each other except by explicit communica-
tion.

When security is absent, nothing which can be proven about a single
module in isolation can be guaranteed to hold when that module is
embedded in a system [. . .]

— Robert Strom and Shaula Yemini

Concurrent and applicative programming complement each other.
The ability to send messages on channels provides I/O without side
effects, while the avoidance of shared data helps keep concurrent
processes from colliding.

— Rob Pike

Rust is not a particularly original language. It may however appear unusual
by contemporary standards, as its design elements are drawn from a number
of “historical” languages that have, with a few exceptions, fallen out of favour.
Five prominent lineages contribute the most, though their influences have come
and gone during the course of Rust’s development:

67

• The NIL (1981) and Hermes (1990) family. These languages were devel-
oped by Robert Strom, Shaula Yemini, David Bacon and others in their
group at IBM Watson Research Center (Yorktown Heights, NY, USA).

• The Erlang (1987) language, developed by Joe Armstrong, Robert Vird-
ing, Claes Wikström, Mike Williams and others in their group at the
Ericsson Computer Science Laboratory (Älvsjö, Stockholm, Sweden) .

• The Sather (1990) language, developed by Stephen Omohundro, Chu-
Cheow Lim, Heinz Schmidt and others in their group at The Interna-
tional Computer Science Institute of the University of California, Berkeley
(Berkeley, CA, USA).

• The Newsqueak (1988), Alef (1995), and Limbo (1996) family. These
languages were developed by Rob Pike, Phil Winterbottom, Sean Dorward
and others in their group at Bell labs Computing Sciences Research Center
(Murray Hill, NJ, USA).

• The Napier (1985) and Napier88 (1988) family. These languages were
developed by Malcolm Atkinson, Ron Morrison and others in their group
at the University of St. Andrews (St. Andrews, Fife, UK).

Additional specific influences can be seen from the following languages:

• The stack-growth implementation of Go.

• The structural algebraic types and compilation manager of SML.

• The attribute and assembly systems of C#.

• The references and deterministic destructor system of C++.

• The memory region systems of the ML Kit and Cyclone.

• The typeclass system of Haskell.

• The lexical identifier rule of Python.

• The block syntax of Ruby.

68

	Introduction
	Disclaimer

	Notation
	Unicode productions
	String table productions

	Lexical structure
	Input format
	Special Unicode Productions
	Identifiers
	Delimiter-restricted productions

	Comments
	Whitespace
	Tokens
	Keywords
	Literals
	Symbols

	Paths

	Syntax extensions
	Macros
	Macro By Example
	Parsing limitations

	Syntax extensions useful for the macro author

	Crates and source files
	Crate files
	Dir directives

	Source files

	Items and attributes
	Items
	Type Parameters
	Modules
	Functions
	Type definitions
	Structures
	Enumerations
	Constants
	Traits
	Implementations
	Foreign modules

	Attributes

	Statements and expressions
	Statements
	Declaration statements
	Expression statements

	Expressions
	Literal expressions
	Path expressions
	Tuple expressions
	Record expressions
	Method-call expressions
	Field expressions
	Vector expressions
	Index expressions
	Unary operator expressions
	Binary operator expressions
	Grouped expressions
	Unary copy expressions
	Unary move expressions
	Call expressions
	Lambda expressions
	While loops
	Infinite loops
	Break expressions
	Loop expressions
	Do expressions
	For expressions
	If expressions
	Match expressions
	Fail expressions
	Return expressions
	Log expressions
	Assert expressions

	Type system
	Types
	Primitive types
	Textual types
	Tuple types
	Vector types
	Structure types
	Enumerated types
	Recursive types
	Record types
	Pointer types
	Function types
	Trait types
	Type parameters
	Self types

	Type kinds

	Memory and concurrency models
	Memory model
	Memory allocation and lifetime
	Memory ownership
	Memory slots
	Memory boxes

	Tasks
	Communication between tasks
	Task lifecycle
	Task scheduling
	Spawning tasks
	Sending values into channels
	Receiving values from ports

	Runtime services, linkage and debugging
	Memory allocation
	Built in types
	Task scheduling and communication
	Logging system

	Appendix: Rationales and design tradeoffs
	Appendix: Influences and further references
	Influences

