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1 Introduction

Rust is a programming language with a focus on type safety, memory safety, con-
currency and performance. It is intended for writing large-scale, high-performance
software that is free from several classes of common errors. Rust has a so-
phisticated memory model that encourages efficient data structures and safe
concurrency patterns, forbidding invalid memory accesses that would otherwise
cause segmentation faults. It is statically typed and compiled ahead of time.

As a multi-paradigm language, Rust supports writing code in procedural, func-
tional and object-oriented styles. Some of its pleasant high-level features include:

• Type inference. Type annotations on local variable declarations are
optional.

• Safe task-based concurrency. Rust’s lightweight tasks do not share
memory, instead communicating through messages.

• Higher-order functions. Efficient and flexible closures provide iteration
and other control structures

• Pattern matching and algebraic data types. Pattern matching on
Rust’s enumeration types (a more powerful version of C’s enums, similar to
algebraic data types in functional languages) is a compact and expressive
way to encode program logic.
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• Polymorphism. Rust has type-parametric functions and types, type
classes and OO-style interfaces.

1.1 Scope

This is an introductory tutorial for the Rust programming language. It covers the
fundamentals of the language, including the syntax, the type system and memory
model, generics, and modules. Additional tutorials cover specific language
features in greater depth.

This tutorial assumes that the reader is already familiar with one or more
languages in the C family. Understanding of pointers and general memory
management techniques will help.

1.2 Conventions

Throughout the tutorial, language keywords and identifiers defined in example
code are displayed in code font.

Code snippets are indented, and also shown in a monospaced font. Not all
snippets constitute whole programs. For brevity, we’ll often show fragments of
programs that don’t compile on their own. To try them out, you might have to
wrap them in fn main() { ... }, and make sure they don’t contain references
to names that aren’t actually defined.

Warning: Rust is a language under ongoing development. Notes
about potential changes to the language, implementation deficiencies,
and other caveats appear offset in blockquotes.

2 Getting started

Warning: The tarball and installer links are for the most recent
release, not master. To use master, you must build from git.

The Rust compiler currently must be built from a tarball or git, unless you are
on Windows, in which case using the installer is recommended. There is a list of
community-maintained nightly builds and packages on the wiki.

Since the Rust compiler is written in Rust, it must be built by a precompiled
“snapshot” version of itself (made in an earlier state of development). The source
build automatically fetches these snapshots from the Internet on our supported
platforms.

Snapshot binaries are currently built and tested on several platforms:
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• Windows (7, 8, Server 2008 R2), x86 only

• Linux (2.6.18 or later, various distributions), x86 and x86-64

• OSX 10.7 (Lion) or greater, x86 and x86-64

You may find that other platforms work, but these are our “tier 1” supported
build environments that are most likely to work.

Note: Windows users should read the detailed Getting started notes
on the wiki. Even when using the binary installer, the Windows
build requires a MinGW installation, the precise details of which are
not discussed here.

To build from source you will also need the following prerequisite packages:

• g++ 4.4 or clang++ 3.x

• python 2.6 or later (but not 3.x)

• perl 5.0 or later

• gnu make 3.81 or later

• curl

If you’ve fulfilled those prerequisites, something along these lines should work.

$ curl -O http://static.rust-lang.org/dist/rust-0.10.tar.gz
$ tar -xzf rust-0.10.tar.gz
$ cd rust-0.10
$ ./configure
$ make && make install

You may need to use sudo make install if you do not normally have permission
to modify the destination directory. The install locations can be adjusted by
passing a --prefix argument to configure. Various other options are also
supported: pass --help for more information on them.

When complete, make install will place several programs into /usr/local/bin:
rustc, the Rust compiler, and rustdoc, the API-documentation tool.
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2.1 Compiling your first program

Rust program files are, by convention, given the extension .rs. Say we have a
file hello.rs containing this program:

~~~~ fn main() { println!(“hello?”); } ~~~~ > Note: An identifier followed
by an exclamation point, like > println!, is a macro invocation. Macros are
explained > later; for now just remember to include the > exclamation point.

If the Rust compiler was installed successfully, running rustc hello.rs will
produce an executable called hello (or hello.exe on Windows) which, upon
running, will likely do exactly what you expect.

The Rust compiler tries to provide useful information when it encounters an
error. If you introduce an error into the program (for example, by changing
println! to some nonexistent macro), and then compile it, you’ll see an error
message like this:

hello.rs:2:5: 2:24 error: macro undefined: ’print_with_unicorns’
hello.rs:2 print_with_unicorns!("hello?");

^~~~~~~~~~~~~~~~~~~

In its simplest form, a Rust program is a .rs file with some types and functions
defined in it. If it has a main function, it can be compiled to an executable. Rust
does not allow code that’s not a declaration to appear at the top level of the file:
all statements must live inside a function. Rust programs can also be compiled
as libraries, and included in other programs, even ones not written in Rust.

2.2 Editing Rust code

There are vim highlighting and indentation scripts in the Rust source distribution
under src/etc/vim/. There is an emacs mode under src/etc/emacs/ called
rust-mode, but do read the instructions included in that directory. In particular,
if you are running emacs 24, then using emacs’s internal package manager to
install rust-mode is the easiest way to keep it up to date. There is also a package
for Sublime Text 2, available both standalone and through Sublime Package
Control, and support for Kate under src/etc/kate.

A community-maintained list of available Rust tooling is on the wiki.

There is ctags support via src/etc/ctags.rust, but many other tools and
editors are not yet supported. If you end up writing a Rust mode for your
favorite editor, let us know so that we can link to it.
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3 Syntax basics

Assuming you’ve programmed in any C-family language (C++, Java, JavaScript,
C#, or PHP), Rust will feel familiar. Code is arranged in blocks delineated
by curly braces; there are control structures for branching and looping, like
the familiar if and while; function calls are written myfunc(arg1, arg2);
operators are written the same and mostly have the same precedence as in C;
comments are again like C; module names are separated with double-colon (::)
as with C++.

The main surface difference to be aware of is that the condition at the head of
control structures like if and while does not require parentheses, while their
bodies must be wrapped in braces. Single-statement, unbraced bodies are not
allowed.

# mod universe { pub fn recalibrate() -> bool { true } }
fn main() {

/* A simple loop */
loop {

// A tricky calculation
if universe::recalibrate() {

return;
}

}
}

The let keyword introduces a local variable. Variables are immutable by default.
To introduce a local variable that you can re-assign later, use let mut instead.

let hi = "hi";
let mut count = 0;

while count < 10 {
println!("count is {}", count);
count += 1;

}

Although Rust can almost always infer the types of local variables, you can
specify a variable’s type by following it in the let with a colon, then the type
name. Static items, on the other hand, always require a type annotation.

static MONSTER_FACTOR: f64 = 57.8;
let monster_size = MONSTER_FACTOR * 10.0;
let monster_size: int = 50;
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Local variables may shadow earlier declarations, as in the previous example:
monster_size was first declared as a f64, and then a second monster_size
was declared as an int. If you were to actually compile this example, though,
the compiler would determine that the first monster_size is unused and issue a
warning (because this situation is likely to indicate a programmer error). For
occasions where unused variables are intentional, their names may be prefixed
with an underscore to silence the warning, like let _monster_size = 50;.

Rust identifiers start with an alphabetic character or an underscore, and after that
may contain any sequence of alphabetic characters, numbers, or underscores. The
preferred style is to write function, variable, and module names with lowercase
letters, using underscores where they help readability, while writing types in
camel case.

let my_variable = 100;
type MyType = int; // primitive types are _not_ camel case

3.1 Expressions and semicolons

Though it isn’t apparent in all code, there is a fundamental difference between
Rust’s syntax and predecessors like C. Many constructs that are statements in
C are expressions in Rust, allowing code to be more concise. For example, you
might write a piece of code like this:

# let item = "salad";
let price;
if item == "salad" {

price = 3.50;
} else if item == "muffin" {

price = 2.25;
} else {

price = 2.00;
}

But, in Rust, you don’t have to repeat the name price:

# let item = "salad";
let price =

if item == "salad" {
3.50

} else if item == "muffin" {
2.25

} else {
2.00

};
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Both pieces of code are exactly equivalent: they assign a value to price depending
on the condition that holds. Note that there are no semicolons in the blocks
of the second snippet. This is important: the lack of a semicolon after the
last statement in a braced block gives the whole block the value of that last
expression.

Put another way, the semicolon in Rust ignores the value of an expression. Thus,
if the branches of the if had looked like { 4; }, the above example would simply
assign () (unit or void) to price. But without the semicolon, each branch has
a different value, and price gets the value of the branch that was taken.

In short, everything that’s not a declaration (declarations are let for variables;
fn for functions; and any top-level named items such as traits, enum types, and
static items) is an expression, including function bodies.

fn is_four(x: int) -> bool {
// No need for a return statement. The result of the expression
// is used as the return value.
x == 4

}

3.2 Primitive types and literals

There are general signed and unsigned integer types, int and uint, as well as
8-, 16-, 32-, and 64-bit variants, i8, u16, etc. Integers can be written in decimal
(144), hexadecimal (0x90), octal (0o70), or binary (0b10010000) base. Each
integral type has a corresponding literal suffix that can be used to indicate the
type of a literal: i for int, u for uint, i8 for the i8 type.

In the absence of an integer literal suffix, Rust will infer the integer type based
on type annotations and function signatures in the surrounding program. In
the absence of any type information at all, Rust will assume that an unsuffixed
integer literal has type int.

let a = 1; // ‘a‘ is an ‘int‘
let b = 10i; // ‘b‘ is an ‘int‘, due to the ‘i‘ suffix
let c = 100u; // ‘c‘ is a ‘uint‘
let d = 1000i32; // ‘d‘ is an ‘i32‘

There are two floating-point types: f32, and f64. Floating-point numbers are
written 0.0, 1e6, or 2.1e-4. Like integers, floating-point literals are inferred to
the correct type. Suffixes f32, and f64 can be used to create literals of a specific
type.

The keywords true and false produce literals of type bool.
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Characters, the char type, are four-byte Unicode codepoints, whose literals
are written between single quotes, as in ’x’. Just like C, Rust understands
a number of character escapes, using the backslash character, such as \n, \r,
and \t. String literals, written between double quotes, allow the same escape
sequences, and do no other processing, unlike languages such as PHP or shell.

On the other hand, raw string literals do not process any escape sequences.
They are written as r##"blah"##, with a matching number of zero or more #
before the opening and after the closing quote, and can contain any sequence of
characters except their closing delimiter. More on strings later.

The unit type, written (), has a single value, also written ().

3.3 Operators

Rust’s set of operators contains very few surprises. Arithmetic is done with *, /,
%, +, and - (multiply, quotient, remainder, add, and subtract). - is also a unary
prefix operator that negates numbers. As in C, the bitwise operators >>, <<, &,
|, and ˆ are also supported.

Note that, if applied to an integer value, ! flips all the bits (bitwise NOT, like ~
in C).

The comparison operators are the traditional ==, !=, <, >, <=, and >=. Short-
circuiting (lazy) boolean operators are written && (and) and || (or).

For compile-time type casting, Rust uses the binary as operator. It takes an
expression on the left side and a type on the right side and will, if a meaningful
conversion exists, convert the result of the expression to the given type. Gen-
erally, as is only used with the primitive numeric types or pointers, and is not
overloadable. transmute can be used for unsafe C-like casting of same-sized
types.

let x: f64 = 4.0;
let y: uint = x as uint;
assert!(y == 4u);

3.4 Syntax extensions

Syntax extensions are special forms that are not built into the language, but are
instead provided by the libraries. To make it clear to the reader when a name
refers to a syntax extension, the names of all syntax extensions end with !. The
standard library defines a few syntax extensions, the most useful of which is
format!, a sprintf-like text formatter that you will often see in examples, and
its related family of macros: print!, println!, and write!.
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format! draws syntax from Python, but contains many of the same principles
that printf has. Unlike printf, format! will give you a compile-time error when
the types of the directives don’t match the types of the arguments.

# let mystery_object = ();

// ‘{}‘ will print the "default format" of a type
println!("{} is {}", "the answer", 43);

// ‘{:?}‘ will conveniently print any type
println!("what is this thing: {:?}", mystery_object);

You can define your own syntax extensions with the macro system. For details,
see the macro tutorial. Note that macro definition is currently considered an
unstable feature.

4 Control structures

4.1 Conditionals

We’ve seen if expressions a few times already. To recap, braces are compulsory,
an if can have an optional else clause, and multiple if/else constructs can
be chained together:

if false {
println!("that’s odd");

} else if true {
println!("right");

} else {
println!("neither true nor false");

}

The condition given to an if construct must be of type bool (no implicit
conversion happens). If the arms are blocks that have a value, this value must
be of the same type for every arm in which control reaches the end of the block:

fn signum(x: int) -> int {
if x < 0 { -1 }
else if x > 0 { 1 }
else { 0 }

}
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4.2 Pattern matching

Rust’s match construct is a generalized, cleaned-up version of C’s switch con-
struct. You provide it with a value and a number of arms, each labelled with a
pattern, and the code compares the value against each pattern in order until
one matches. The matching pattern executes its corresponding arm.

# let my_number = 1;
match my_number {
0 => println!("zero"),
1 | 2 => println!("one or two"),
3..10 => println!("three to ten"),
_ => println!("something else")

}

Unlike in C, there is no “falling through” between arms: only one arm executes,
and it doesn’t have to explicitly break out of the construct when it is finished.

A match arm consists of a pattern, then an arrow =>, followed by an action
(expression). Literals are valid patterns and match only their own value. A single
arm may match multiple different patterns by combining them with the pipe
operator (|), so long as every pattern binds the same set of variables. Ranges
of numeric literal patterns can be expressed with two dots, as in M..N. The
underscore (_) is a wildcard pattern that matches any single value. (..) is a
different wildcard that can match one or more fields in an enum variant.

The patterns in a match arm are followed by a fat arrow, =>, then an expression
to evaluate. Each case is separated by commas. It’s often convenient to use a
block expression for each case, in which case the commas are optional.

# let my_number = 1;
match my_number {
0 => { println!("zero") }
_ => { println!("something else") }

}

match constructs must be exhaustive: they must have an arm covering every
possible case. For example, the typechecker would reject the previous example if
the arm with the wildcard pattern was omitted.

A powerful application of pattern matching is destructuring: matching in order
to bind names to the contents of data types.

Note: The following code makes use of tuples ((f64, f64)) which
are explained in section 5.3. For now you can think of tuples as a
list of items.
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use std::f64;
use std::num::atan;
fn angle(vector: (f64, f64)) -> f64 {

let pi = f64::consts::PI;
match vector {
(0.0, y) if y < 0.0 => 1.5 * pi,
(0.0, _) => 0.5 * pi,
(x, y) => atan(y / x)

}
}

A variable name in a pattern matches any value, and binds that name to the
value of the matched value inside of the arm’s action. Thus, (0.0, y) matches
any tuple whose first element is zero, and binds y to the second element. (x, y)
matches any two-element tuple, and binds both elements to variables. (0.0,_)
matches any tuple whose first element is zero and does not bind anything to the
second element.

A subpattern can also be bound to a variable, using variable @ pattern. For
example:

# let age = 23;
match age {

a @ 0..20 => println!("{} years old", a),
_ => println!("older than 21")

}

Any match arm can have a guard clause (written if EXPR), called a pattern
guard, which is an expression of type bool that determines, after the pattern
is found to match, whether the arm is taken or not. The variables bound by
the pattern are in scope in this guard expression. The first arm in the angle
example shows an example of a pattern guard.

You’ve already seen simple let bindings, but let is a little fancier than you’ve
been led to believe. It, too, supports destructuring patterns. For example, you
can write this to extract the fields from a tuple, introducing two variables at
once: a and b.

# fn get_tuple_of_two_ints() -> (int, int) { (1, 1) }
let (a, b) = get_tuple_of_two_ints();

Let bindings only work with irrefutable patterns: that is, patterns that can never
fail to match. This excludes let from matching literals and most enum variants.
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4.3 Loops

while denotes a loop that iterates as long as its given condition (which must
have type bool) evaluates to true. Inside a loop, the keyword break aborts the
loop, and continue aborts the current iteration and continues with the next.

let mut cake_amount = 8;
while cake_amount > 0 {

cake_amount -= 1;
}

loop denotes an infinite loop, and is the preferred way of writing while true:

let mut x = 5u;
loop {

x += x - 3;
if x % 5 == 0 { break; }
println!("{}", x);

}

This code prints out a weird sequence of numbers and stops as soon as it finds
one that can be divided by five.

There is also a for-loop that can be used to iterate over a range of numbers:

for n in range(0, 5) {
println!("{}", n);

}

The snippet above prints integer numbers under 5 starting at 0.

More generally, a for loop works with anything implementing the Iterator trait.
Data structures can provide one or more methods that return iterators over their
contents. For example, strings support iteration over their contents in various
ways:

let s = "Hello";
for c in s.chars() {

println!("{}", c);
}

The snippet above prints the characters in “Hello” vertically, adding a new line
after each character.
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5 Data structures

5.1 Structs

Rust struct types must be declared before they are used using the struct
syntax: struct Name { field1: T1, field2: T2 [, ...] }, where T1,
T2, . . . denote types. To construct a struct, use the same syntax, but leave off
the struct: for example: Point { x: 1.0, y: 2.0 }.

Structs are quite similar to C structs and are even laid out the same way in
memory (so you can read from a Rust struct in C, and vice-versa). Use the dot
operator to access struct fields, as in mypoint.x.

struct Point {
x: f64,
y: f64

}

Structs have “inherited mutability”, which means that any field of a struct may
be mutable, if the struct is in a mutable slot.

With a value (say, mypoint) of such a type in a mutable location, you can do
mypoint.y += 1.0. But in an immutable location, such an assignment to a
struct without inherited mutability would result in a type error.

# struct Point { x: f64, y: f64 }
let mut mypoint = Point { x: 1.0, y: 1.0 };
let origin = Point { x: 0.0, y: 0.0 };

mypoint.y += 1.0; // ‘mypoint‘ is mutable, and its fields as well
origin.y += 1.0; // ERROR: assigning to immutable field

match patterns destructure structs. The basic syntax is Name { fieldname:
pattern, ... }:

# struct Point { x: f64, y: f64 }
# let mypoint = Point { x: 0.0, y: 0.0 };
match mypoint {

Point { x: 0.0, y: yy } => println!("{}", yy),
Point { x: xx, y: yy } => println!("{} {}", xx, yy)

}

In general, the field names of a struct do not have to appear in the same order
they appear in the type. When you are not interested in all the fields of a struct,
a struct pattern may end with , .. (as in Name { field1, .. }) to indicate
that you’re ignoring all other fields. Additionally, struct fields have a shorthand
matching form that simply reuses the field name as the binding name.
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# struct Point { x: f64, y: f64 }
# let mypoint = Point { x: 0.0, y: 0.0 };
match mypoint {

Point { x, .. } => println!("{}", x)
}

5.2 Enums

Enums are datatypes with several alternate representations. A simple enum
defines one or more constants, all of which have the same type:

enum Direction {
North,
East,
South,
West

}

Each variant of this enum has a unique and constant integral discriminator
value. If no explicit discriminator is specified for a variant, the value defaults to
the value of the previous variant plus one. If the first variant does not have a
discriminator, it defaults to 0. For example, the value of North is 0, East is 1,
South is 2, and West is 3.

When an enum has simple integer discriminators, you can apply the as cast
operator to convert a variant to its discriminator value as an int:

# enum Direction { North }
println!( "{:?} => {}", North, North as int );

It is possible to set the discriminator values to chosen constant values:

enum Color {
Red = 0xff0000,
Green = 0x00ff00,
Blue = 0x0000ff

}

Variants do not have to be simple values; they may be more complex:

# struct Point { x: f64, y: f64 }
enum Shape {

Circle(Point, f64),
Rectangle(Point, Point)

}
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A value of this type is either a Circle, in which case it contains a Point struct
and a f64, or a Rectangle, in which case it contains two Point structs. The
run-time representation of such a value includes an identifier of the actual form
that it holds, much like the “tagged union” pattern in C, but with better static
guarantees.

This declaration defines a type Shape that can refer to such shapes, and two
functions, Circle and Rectangle, which can be used to construct values of
the type. To create a new Circle, write Circle(Point { x: 0.0, y: 0.0 },
10.0).

All of these variant constructors may be used as patterns. The only way to
access the contents of an enum instance is the destructuring of a match. For
example:

use std::f64;
# struct Point {x: f64, y: f64}
# enum Shape { Circle(Point, f64), Rectangle(Point, Point) }
fn area(sh: Shape) -> f64 {

match sh {
Circle(_, size) => f64::consts::PI * size * size,
Rectangle(Point { x, y }, Point { x: x2, y: y2 }) => (x2 - x) * (y2 - y)

}
}

Use a lone _ to ignore an individual field. Ignore all fields of a variant like:
Circle(..). Nullary enum patterns are written without parentheses:

# struct Point { x: f64, y: f64 }
# enum Direction { North, East, South, West }
fn point_from_direction(dir: Direction) -> Point {

match dir {
North => Point { x: 0.0, y: 1.0 },
East => Point { x: 1.0, y: 0.0 },
South => Point { x: 0.0, y: -1.0 },
West => Point { x: -1.0, y: 0.0 }

}
}

Enum variants may also be structs. For example:

use std::f64;
# struct Point { x: f64, y: f64 }
# fn square(x: f64) -> f64 { x * x }
enum Shape {
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Circle { center: Point, radius: f64 },
Rectangle { top_left: Point, bottom_right: Point }

}
fn area(sh: Shape) -> f64 {

match sh {
Circle { radius: radius, .. } => f64::consts::PI * square(radius),
Rectangle { top_left: top_left, bottom_right: bottom_right } => {

(bottom_right.x - top_left.x) * (top_left.y - bottom_right.y)
}

}
}

Note: This feature of the compiler is currently gated behind the
#[feature(struct_variant)] directive. More about these direc-
tives can be found in the manual.

5.3 Tuples

Tuples in Rust behave exactly like structs, except that their fields do not have
names. Thus, you cannot access their fields with dot notation. Tuples can have
any arity (number of elements) except for 0 (though you may consider unit, (),
as the empty tuple if you like).

let mytup: (int, int, f64) = (10, 20, 30.0);
match mytup {
(a, b, c) => println!("{}", a + b + (c as int))

}

5.4 Tuple structs

Rust also has tuple structs, which behave like both structs and tuples, except
that, unlike tuples, tuple structs have names (so Foo(1, 2) has a different type
from Bar(1, 2)), and tuple structs’ fields do not have names.

For example:

struct MyTup(int, int, f64);
let mytup: MyTup = MyTup(10, 20, 30.0);
match mytup {
MyTup(a, b, c) => println!("{}", a + b + (c as int))

}

There is a special case for tuple structs with a single field, which are sometimes
called “newtypes” (after Haskell’s “newtype” feature). These are used to define
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new types in such a way that the new name is not just a synonym for an existing
type but is rather its own distinct type.

struct GizmoId(int);

Types like this can be useful to differentiate between data that have the same
underlying type but must be used in different ways.

struct Inches(int);
struct Centimeters(int);

The above definitions allow for a simple way for programs to avoid confusing
numbers that correspond to different units. Their integer values can be extracted
with pattern matching:

# struct Inches(int);

let length_with_unit = Inches(10);
let Inches(integer_length) = length_with_unit;
println!("length is {} inches", integer_length);

6 Functions

We’ve already seen several function definitions. Like all other static declarations,
such as type, functions can be declared both at the top level and inside other
functions (or in modules, which we’ll come back to later). The fn keyword
introduces a function. A function has an argument list, which is a parenthesized
list of name: type pairs separated by commas. An arrow -> separates the
argument list and the function’s return type.

fn line(a: int, b: int, x: int) -> int {
return a * x + b;

}

The return keyword immediately returns from the body of a function. It is
optionally followed by an expression to return. A function can also return a
value by having its top-level block produce an expression.

fn line(a: int, b: int, x: int) -> int {
a * x + b

}
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It’s better Rust style to write a return value this way instead of writing an
explicit return. The utility of return comes in when returning early from a
function. Functions that do not return a value are said to return unit, (), and
both the return type and the return value may be omitted from the definition.
The following two functions are equivalent.

fn do_nothing_the_hard_way() -> () { return (); }

fn do_nothing_the_easy_way() { }

Ending the function with a semicolon like so is equivalent to returning ().

fn line(a: int, b: int, x: int) -> int { a * x + b }
fn oops(a: int, b: int, x: int) -> () { a * x + b; }

assert!(8 == line(5, 3, 1));
assert!(() == oops(5, 3, 1));

As with match expressions and let bindings, function arguments support pattern
destructuring. Like let, argument patterns must be irrefutable, as in this
example that unpacks the first value from a tuple and returns it.

fn first((value, _): (int, f64)) -> int { value }

7 Destructors

A destructor is a function responsible for cleaning up the resources used by an
object when it is no longer accessible. Destructors can be defined to handle the
release of resources like files, sockets and heap memory.

Objects are never accessible after their destructor has been called, so no dynamic
failures are possible from accessing freed resources. When a task fails, destructors
of all objects in the task are called.

The ~ sigil represents a unique handle for a memory allocation on the heap:

{
// an integer allocated on the heap
let y = ~10;

}
// the destructor frees the heap memory as soon as ‘y‘ goes out of scope

Rust includes syntax for heap memory allocation in the language since it’s
commonly used, but the same semantics can be implemented by a type with a
custom destructor.
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8 Ownership

Rust formalizes the concept of object ownership to delegate management of
an object’s lifetime to either a variable or a task-local garbage collector. An
object’s owner is responsible for managing the lifetime of the object by calling
the destructor, and the owner determines whether the object is mutable.

Ownership is recursive, so mutability is inherited recursively and a destructor
destroys the contained tree of owned objects. Variables are top-level owners and
destroy the contained object when they go out of scope.

// the struct owns the objects contained in the ‘x‘ and ‘y‘ fields
struct Foo { x: int, y: ~int }

{
// ‘a‘ is the owner of the struct, and thus the owner of the struct’s fields
let a = Foo { x: 5, y: ~10 };

}
// when ‘a‘ goes out of scope, the destructor for the ‘~int‘ in the struct’s
// field is called

// ‘b‘ is mutable, and the mutability is inherited by the objects it owns
let mut b = Foo { x: 5, y: ~10 };
b.x = 10;

If an object doesn’t contain any non-Send types, it consists of a single ownership
tree and is itself given the Send trait which allows it to be sent between tasks.
Custom destructors can only be implemented directly on types that are Send,
but non-Send types can still contain types with custom destructors. Example of
types which are not Send are Gc<T> and Rc<T>, the shared-ownership types.

9 Implementing a linked list

An enum is a natural fit for describing a linked list, because it can express a
List type as being either the end of the list (Nil) or another node (Cons). The
full definition of the Cons variant will require some thought.

enum List {
Cons(...), // an incomplete definition of the next element in a List
Nil // the end of a List

}

The obvious approach is to define Cons as containing an element in the list along
with the next List node. However, this will generate a compiler error.
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// error: illegal recursive enum type; wrap the inner value in a box to make it representable
enum List {

Cons(u32, List), // an element (‘u32‘) and the next node in the list
Nil

}

This error message is related to Rust’s precise control over memory layout, and
solving it will require introducing the concept of boxing.

9.1 Boxes

A value in Rust is stored directly inside the owner. If a struct contains four
u32 fields, it will be four times as large as a single u32.

use std::mem::size_of; // bring ‘size_of‘ into the current scope, for convenience

struct Foo {
a: u32,
b: u32,
c: u32,
d: u32

}

assert_eq!(size_of::<Foo>(), size_of::<u32>() * 4);

struct Bar {
a: Foo,
b: Foo,
c: Foo,
d: Foo

}

assert_eq!(size_of::<Bar>(), size_of::<u32>() * 16);

Our previous attempt at defining the List type included an u32 and a List
directly inside Cons, making it at least as big as the sum of both types. The
type was invalid because the size was infinite!

An owned box (~) uses a dynamic memory allocation to provide the invariant of
always being the size of a pointer, regardless of the contained type. This can be
leveraged to create a valid List definition:

enum List {
Cons(u32, ~List),
Nil

}
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Defining a recursive data structure like this is the canonical example of an owned
box. Much like an unboxed value, an owned box has a single owner and is
therefore limited to expressing a tree-like data structure.

Consider an instance of our List type:

# enum List {
# Cons(u32, ~List),
# Nil
# }
let list = Cons(1, ~Cons(2, ~Cons(3, ~Nil)));

It represents an owned tree of values, inheriting mutability down the tree and
being destroyed along with the owner. Since the list variable above is immutable,
the whole list is immutable. The memory allocation itself is the box, while the
owner holds onto a pointer to it:

List box List box List box List box
+--------------+ +--------------+ +--------------+ +--------------+

list -> | Cons | 1 | ~ | -> | Cons | 2 | ~ | -> | Cons | 3 | ~ | -> | Nil |
+--------------+ +--------------+ +--------------+ +--------------+

Note: the above diagram shows the logical contents of the enum.
The actual memory layout of the enum may vary. For example, for
the List enum shown above, Rust guarantees that there will be no
enum tag field in the actual structure. See the language reference for
more details.

An owned box is a common example of a type with a destructor. The allocated
memory is cleaned up when the box is destroyed.

9.2 Move semantics

Rust uses a shallow copy for parameter passing, assignment and returning from
functions. Passing around the List will copy only as deep as the pointer to the
box rather than doing an implicit heap allocation.

# enum List {
# Cons(u32, ~List),
# Nil
# }
let xs = Cons(1, ~Cons(2, ~Cons(3, ~Nil)));
let ys = xs; // copies ‘Cons(u32, pointer)‘ shallowly
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Rust will consider a shallow copy of a type with a destructor like List to move
ownership of the value. After a value has been moved, the source location cannot
be used unless it is reinitialized.

# enum List {
# Cons(u32, ~List),
# Nil
# }
let mut xs = Nil;
let ys = xs;

// attempting to use ‘xs‘ will result in an error here

xs = Nil;

// ‘xs‘ can be used again

A destructor call will only occur for a variable that has not been moved from, as
it is only called a single time.

Avoiding a move can be done with the library-defined clone method:

let x = ~5;
let y = x.clone(); // ‘y‘ is a newly allocated box
let z = x; // no new memory allocated, ‘x‘ can no longer be used

The clone method is provided by the Clone trait, and can be derived for our
List type. Traits will be explained in detail later.

#[deriving(Clone)]
enum List {

Cons(u32, ~List),
Nil

}

let x = Cons(5, ~Nil);
let y = x.clone();

// ‘x‘ can still be used!

let z = x;

// and now, it can no longer be used since it has been moved

The mutability of a value may be changed by moving it to a new owner:

22



let r = ~13;
let mut s = r; // box becomes mutable
*s += 1;
let t = s; // box becomes immutable

A simple way to define a function prepending to the List type is to take
advantage of moves:

enum List {
Cons(u32, ~List),
Nil

}

fn prepend(xs: List, value: u32) -> List {
Cons(value, ~xs)

}

let mut xs = Nil;
xs = prepend(xs, 1);
xs = prepend(xs, 2);
xs = prepend(xs, 3);

However, this is not a very flexible definition of prepend as it requires ownership
of a list to be passed in rather than just mutating it in-place.

9.3 References

The obvious signature for a List equality comparison is the following:

fn eq(xs: List, ys: List) -> bool { /* ... */ }

However, this will cause both lists to be moved into the function. Ownership
isn’t required to compare the lists, so the function should take references (&T)
instead.

fn eq(xs: &List, ys: &List) -> bool { /* ... */ }

A reference is a non-owning view of a value. A reference can be obtained with
the & (address-of) operator. It can be dereferenced by using the * operator. In
a pattern, such as match expression branches, the ref keyword can be used to
bind to a variable name by-reference rather than by-value. A recursive definition
of equality using references is as follows:
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# enum List {
# Cons(u32, ~List),
# Nil
# }
fn eq(xs: &List, ys: &List) -> bool {

// Match on the next node in both lists.
match (xs, ys) {

// If we have reached the end of both lists, they are equal.
(&Nil, &Nil) => true,
// If the current element in both lists is equal, keep going.
(&Cons(x, ~ref next_xs), &Cons(y, ~ref next_ys)) if x == y => eq(next_xs, next_ys),
// If the current elements are not equal, the lists are not equal.
_ => false

}
}

let xs = Cons(5, ~Cons(10, ~Nil));
let ys = Cons(5, ~Cons(10, ~Nil));
assert!(eq(&xs, &ys));

Note: Rust doesn’t guarantee tail-call optimization, but LLVM is
able to handle a simple case like this with optimizations enabled.

9.4 Lists of other types

Our List type is currently always a list of 32-bit unsigned integers. By leveraging
Rust’s support for generics, it can be extended to work for any element type.

The u32 in the previous definition can be substituted with a type parameter:

Note: The following code introduces generics, which are explained
in a dedicated section.

enum List<T> {
Cons(T, ~List<T>),
Nil

}

The old List of u32 is now available as List<u32>. The prepend definition has
to be updated too:

# enum List<T> {
# Cons(T, ~List<T>),
# Nil
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# }
fn prepend<T>(xs: List<T>, value: T) -> List<T> {

Cons(value, ~xs)
}

Generic functions and types like this are equivalent to defining specialized versions
for each set of type parameters.

Using the generic List<T> works much like before, thanks to type inference:

# enum List<T> {
# Cons(T, ~List<T>),
# Nil
# }
# fn prepend<T>(xs: List<T>, value: T) -> List<T> {
# Cons(value, ~xs)
# }
let mut xs = Nil; // Unknown type! This is a ‘List<T>‘, but ‘T‘ can be anything.
xs = prepend(xs, 10); // The compiler infers the type of ‘xs‘ as ‘List<int>‘ from this.
xs = prepend(xs, 15);
xs = prepend(xs, 20);

The code sample above demonstrates type inference making most type annota-
tions optional. It is equivalent to the following type-annotated code:

# enum List<T> {
# Cons(T, ~List<T>),
# Nil
# }
# fn prepend<T>(xs: List<T>, value: T) -> List<T> {
# Cons(value, ~xs)
# }
let mut xs: List<int> = Nil::<int>;
xs = prepend::<int>(xs, 10);
xs = prepend::<int>(xs, 15);
xs = prepend::<int>(xs, 20);

In declarations, the language uses Type<T, U, V> to describe a list of type
parameters, but expressions use identifier::<T, U, V>, to disambiguate the
< operator.

9.5 Defining list equality with generics

Generic functions are type-checked from the definition, so any necessary proper-
ties of the type must be specified up-front. Our previous definition of list equality
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relied on the element type having the == operator available, and took advantage
of the lack of a destructor on u32 to copy it without a move of ownership.

We can add a trait bound on the Eq trait to require that the type implement the
== operator. Two more ref annotations need to be added to avoid attempting
to move out the element types:

# enum List<T> {
# Cons(T, ~List<T>),
# Nil
# }
fn eq<T: Eq>(xs: &List<T>, ys: &List<T>) -> bool {

// Match on the next node in both lists.
match (xs, ys) {

// If we have reached the end of both lists, they are equal.
(&Nil, &Nil) => true,
// If the current element in both lists is equal, keep going.
(&Cons(ref x, ~ref next_xs), &Cons(ref y, ~ref next_ys)) if x == y => eq(next_xs, next_ys),
// If the current elements are not equal, the lists are not equal.
_ => false

}
}

let xs = Cons(’c’, ~Cons(’a’, ~Cons(’t’, ~Nil)));
let ys = Cons(’c’, ~Cons(’a’, ~Cons(’t’, ~Nil)));
assert!(eq(&xs, &ys));

This would be a good opportunity to implement the Eq trait for our list type,
making the == and != operators available. We’ll need to provide an impl for the
Eq trait and a definition of the eq method. In a method, the self parameter
refers to an instance of the type we’re implementing on.

# enum List<T> {
# Cons(T, ~List<T>),
# Nil
# }
impl<T: Eq> Eq for List<T> {

fn eq(&self, ys: &List<T>) -> bool {
// Match on the next node in both lists.
match (self, ys) {

// If we have reached the end of both lists, they are equal.
(&Nil, &Nil) => true,
// If the current element in both lists is equal, keep going.
(&Cons(ref x, ~ref next_xs), &Cons(ref y, ~ref next_ys)) if x == y => next_xs == next_ys,
// If the current elements are not equal, the lists are not equal.
_ => false
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}
}

}

let xs = Cons(5, ~Cons(10, ~Nil));
let ys = Cons(5, ~Cons(10, ~Nil));
// The methods below are part of the Eq trait,
// which we implemented on our linked list.
assert!(xs.eq(&ys));
assert!(!xs.ne(&ys));

// The Eq trait also allows us to use the shorthand infix operators.
assert!(xs == ys); // ‘xs == ys‘ is short for ‘xs.eq(&ys)‘
assert!(!(xs != ys)); // ‘xs != ys‘ is short for ‘xs.ne(&ys)‘

10 More on boxes

The most common use case for owned boxes is creating recursive data structures
like a binary search tree. Rust’s trait-based generics system (covered later in the
tutorial) is usually used for static dispatch, but also provides dynamic dispatch
via boxing. Values of different types may have different sizes, but a box is able
to erase the difference via the layer of indirection they provide.

In uncommon cases, the indirection can provide a performance gain or memory
reduction by making values smaller. However, unboxed values should almost
always be preferred when they are usable.

Note that returning large unboxed values via boxes is unnecessary. A large value
is returned via a hidden output parameter, and the decision on where to place
the return value should be left to the caller:

fn foo() -> (u64, u64, u64, u64, u64, u64) {
(5, 5, 5, 5, 5, 5)

}

let x = ~foo(); // allocates a ‘~‘ box, and writes the integers directly to it

Beyond the properties granted by the size, an owned box behaves as a regular
value by inheriting the mutability and lifetime of the owner:

let x = 5; // immutable
let mut y = 5; // mutable
y += 2;
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let x = ~5; // immutable
let mut y = ~5; // mutable
*y += 2; // the ‘*‘ operator is needed to access the contained value

11 References

In contrast with owned boxes, where the holder of an owned box is the owner of
the pointed-to memory, references never imply ownership - they are “borrowed”.
You can borrow a reference to any object, and the compiler verifies that it cannot
outlive the lifetime of the object.

As an example, consider a simple struct type, Point:

struct Point {
x: f64,
y: f64

}

We can use this simple definition to allocate points in many different ways. For
example, in this code, each of these three local variables contains a point, but
allocated in a different location:

# struct Point { x: f64, y: f64 }
let on_the_stack : Point = Point { x: 3.0, y: 4.0 };
let managed_box : @Point = @Point { x: 5.0, y: 1.0 };
let owned_box : ~Point = ~Point { x: 7.0, y: 9.0 };

Suppose we want to write a procedure that computes the distance between
any two points, no matter where they are stored. For example, we might like
to compute the distance between on_the_stack and managed_box, or between
managed_box and owned_box. One option is to define a function that takes two
arguments of type point—that is, it takes the points by value. But this will cause
the points to be copied when we call the function. For points, this is probably
not so bad, but often copies are expensive. So we’d like to define a function that
takes the points by pointer. We can use references to do this:

use std::num::sqrt;
# struct Point { x: f64, y: f64 }
fn compute_distance(p1: &Point, p2: &Point) -> f64 {

let x_d = p1.x - p2.x;
let y_d = p1.y - p2.y;
sqrt(x_d * x_d + y_d * y_d)

}
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Now we can call compute_distance() in various ways:

# struct Point{ x: f64, y: f64 };
# let on_the_stack : Point = Point { x: 3.0, y: 4.0 };
# let managed_box : @Point = @Point { x: 5.0, y: 1.0 };
# let owned_box : ~Point = ~Point { x: 7.0, y: 9.0 };
# fn compute_distance(p1: &Point, p2: &Point) -> f64 { 0.0 }
compute_distance(&on_the_stack, managed_box);
compute_distance(managed_box, owned_box);

Here the & operator is used to take the address of the variable on_the_stack;
this is because on_the_stack has the type Point (that is, a struct value) and
we have to take its address to get a reference. We also call this borrowing the
local variable on_the_stack, because we are creating an alias: that is, another
route to the same data.

In the case of the boxes managed_box and owned_box, however, no explicit
action is necessary. The compiler will automatically convert a box like @point
or ~point to a reference like &point. This is another form of borrowing; in this
case, the contents of the managed/owned box are being lent out.

Whenever a value is borrowed, there are some limitations on what you can do
with the original. For example, if the contents of a variable have been lent out,
you cannot send that variable to another task, nor will you be permitted to take
actions that might cause the borrowed value to be freed or to change its type.
This rule should make intuitive sense: you must wait for a borrowed value to be
returned (that is, for the reference to go out of scope) before you can make full
use of it again.

For a more in-depth explanation of references and lifetimes, read the references
and lifetimes guide.

11.1 Freezing

Lending an &-pointer to an object freezes it and prevents mutation—even if the
object was declared as mut. Freeze objects have freezing enforced statically at
compile-time. An example of a non-Freeze type is RefCell<T>.

let mut x = 5;
{

let y = &x; // ‘x‘ is now frozen. It cannot be modified or re-assigned.
}
// ‘x‘ is now unfrozen again
# x = 3;
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12 Dereferencing pointers

Rust uses the unary star operator (*) to access the contents of a box or pointer,
similarly to C.

let managed = @10;
let owned = ~20;
let borrowed = &30;

let sum = *managed + *owned + *borrowed;

Dereferenced mutable pointers may appear on the left hand side of assignments.
Such an assignment modifies the value that the pointer points to.

let managed = @10;
let mut owned = ~20;

let mut value = 30;
let borrowed = &mut value;

*owned = *borrowed + 100;
*borrowed = *managed + 1000;

Pointers have high operator precedence, but lower precedence than the dot
operator used for field and method access. This precedence order can sometimes
make code awkward and parenthesis-filled.

# struct Point { x: f64, y: f64 }
# enum Shape { Rectangle(Point, Point) }
# impl Shape { fn area(&self) -> int { 0 } }
let start = @Point { x: 10.0, y: 20.0 };
let end = ~Point { x: (*start).x + 100.0, y: (*start).y + 100.0 };
let rect = &Rectangle(*start, *end);
let area = (*rect).area();

To combat this ugliness the dot operator applies automatic pointer dereferencing
to the receiver (the value on the left-hand side of the dot), so in most cases,
explicitly dereferencing the receiver is not necessary.

# struct Point { x: f64, y: f64 }
# enum Shape { Rectangle(Point, Point) }
# impl Shape { fn area(&self) -> int { 0 } }
let start = @Point { x: 10.0, y: 20.0 };
let end = ~Point { x: start.x + 100.0, y: start.y + 100.0 };
let rect = &Rectangle(*start, *end);
let area = rect.area();
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You can write an expression that dereferences any number of pointers auto-
matically. For example, if you feel inclined, you could write something silly
like

# struct Point { x: f64, y: f64 }
let point = &@~Point { x: 10.0, y: 20.0 };
println!("{:f}", point.x);

The indexing operator ([]) also auto-dereferences.

13 Vectors and strings

A vector is a contiguous block of memory containing zero or more values of the
same type. Rust also supports vector reference types, called slices, which are a
view into a block of memory represented as a pointer and a length.

Strings are represented as vectors of u8, with the guarantee of containing a valid
UTF-8 sequence.

Fixed-size vectors are an unboxed block of memory, with the element length
as part of the type. A fixed-size vector owns the elements it contains, so the
elements are mutable if the vector is mutable. Fixed-size strings do not exist.

// A fixed-size vector
let numbers = [1, 2, 3];
let more_numbers = numbers;

// The type of a fixed-size vector is written as ‘[Type, ..length]‘
let five_zeroes: [int, ..5] = [0, ..5];

A unique vector is dynamically sized, and has a destructor to clean up allocated
memory on the heap. A unique vector owns the elements it contains, so the
elements are mutable if the vector is mutable.

// A dynamically sized vector (unique vector)
let mut numbers = ~[1, 2, 3];
numbers.push(4);
numbers.push(5);

// The type of a unique vector is written as ‘~[int]‘
let more_numbers: ~[int] = numbers;

// The original ‘numbers‘ value can no longer be used, due to move semantics.

let mut string = ~"fo";
string.push_char(’o’);
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Slices are similar to fixed-size vectors, but the length is not part of the type.
They simply point into a block of memory and do not have ownership over the
elements.

// A slice
let xs = &[1, 2, 3];

// Slices have their type written as ‘&[int]‘
let ys: &[int] = xs;

// Other vector types coerce to slices
let three = [1, 2, 3];
let zs: &[int] = three;

// An unadorned string literal is an immutable string slice
let string = "foobar";

// A string slice type is written as ‘&str‘
let view: &str = string.slice(0, 3);

Mutable slices also exist, just as there are mutable references. However, there are
no mutable string slices. Strings are a multi-byte encoding (UTF-8) of Unicode
code points, so they cannot be freely mutated without the ability to alter the
length.

let mut xs = [1, 2, 3];
let view = xs.mut_slice(0, 2);
view[0] = 5;

// The type of a mutable slice is written as ‘&mut [T]‘
let ys: &mut [int] = &mut [1, 2, 3];

Square brackets denote indexing into a vector:

# enum Crayon { Almond, AntiqueBrass, Apricot,
# Aquamarine, Asparagus, AtomicTangerine,
# BananaMania, Beaver, Bittersweet };
# fn draw_scene(c: Crayon) { }
let crayons: [Crayon, ..3] = [BananaMania, Beaver, Bittersweet];
match crayons[0] {

Bittersweet => draw_scene(crayons[0]),
_ => ()

}

A vector can be destructured using pattern matching:
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let numbers: &[int] = &[1, 2, 3];
let score = match numbers {

[] => 0,
[a] => a * 10,
[a, b] => a * 6 + b * 4,
[a, b, c, ..rest] => a * 5 + b * 3 + c * 2 + rest.len() as int

};

Both vectors and strings support a number of useful methods, defined in std::vec
and std::str.

14 Ownership escape hatches

Ownership can cleanly describe tree-like data structures, and references provide
non-owning pointers. However, more flexibility is often desired and Rust provides
ways to escape from strict single parent ownership.

The standard library provides the std::rc::Rc pointer type to express shared
ownership over a reference counted box. As soon as all of the Rc pointers go out
of scope, the box and the contained value are destroyed.

use std::rc::Rc;

// A fixed-size array allocated in a reference-counted box
let x = Rc::new([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
let y = x.clone(); // a new owner
let z = x; // this moves ‘x‘ into ‘z‘, rather than creating a new owner

assert!(*z == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);

// the variable is mutable, but not the contents of the box
let mut a = Rc::new([10, 9, 8, 7, 6, 5, 4, 3, 2, 1]);
a = z;

A garbage collected pointer is provided via std::gc::Gc, with a task-local
garbage collector having ownership of the box. It allows the creation of cycles,
and the individual Gc pointers do not have a destructor.

use std::gc::Gc;

// A fixed-size array allocated in a garbage-collected box
let x = Gc::new([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
let y = x; // does not perform a move, unlike with ‘Rc‘
let z = x;
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assert!(*z.borrow() == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);

With shared ownership, mutability cannot be inherited so the boxes are always
immutable. However, it’s possible to use dynamic mutability via types like
std::cell::Cell where freezing is handled via dynamic checks and can fail at
runtime.

The Rc and Gc types are not sendable, so they cannot be used to share memory
between tasks. Safe immutable and mutable shared memory is provided by the
extra::arc module.

15 Closures

Named functions, like those we’ve seen so far, may not refer to local variables
declared outside the function: they do not close over their environment (some-
times referred to as “capturing” variables in their environment). For example,
you couldn’t write the following:

let foo = 10;

fn bar() -> int {
return foo; // ‘bar‘ cannot refer to ‘foo‘

}

Rust also supports closures, functions that can access variables in the enclosing
scope.

fn call_closure_with_ten(b: |int|) { b(10); }

let captured_var = 20;
let closure = |arg| println!("captured_var={}, arg={}", captured_var, arg);

call_closure_with_ten(closure);

Closures begin with the argument list between vertical bars and are followed by
a single expression. Remember that a block, { <expr1>; <expr2>; ... }, is
considered a single expression: it evaluates to the result of the last expression it
contains if that expression is not followed by a semicolon, otherwise the block
evaluates to ().

The types of the arguments are generally omitted, as is the return type, because
the compiler can almost always infer them. In the rare case where the compiler
needs assistance, though, the arguments and return types may be annotated.

34



let square = |x: int| -> uint { (x * x) as uint };

There are several forms of closure, each with its own role. The most common,
called a stack closure, has type || and can directly access local variables in the
enclosing scope.

let mut max = 0;
let f = |x: int| if x > max { max = x };
for x in [1, 2, 3].iter() {

f(*x);
}

Stack closures are very efficient because their environment is allocated on the call
stack and refers by pointer to captured locals. To ensure that stack closures never
outlive the local variables to which they refer, stack closures are not first-class.
That is, they can only be used in argument position; they cannot be stored
in data structures or returned from functions. Despite these limitations, stack
closures are used pervasively in Rust code.

15.1 Owned closures

Owned closures, written proc, hold on to things that can safely be sent between
processes. They copy the values they close over, much like managed closures,
but they also own them: that is, no other code can access them. Owned closures
are used in concurrent code, particularly for spawning tasks.

Closures can be used to spawn tasks. A practical example of this pattern is
found when using the spawn function, which starts a new task.

use std::task::spawn;

// proc is the closure which will be spawned.
spawn(proc() {

println!("I’m a new task")
});

Note: If you want to see the output of debug! statements, you
will need to turn on debug! logging. To enable debug! logging, set
the RUST_LOG environment variable to the name of your crate,
which, for a file named foo.rs, will be foo (e.g., with bash, export
RUST_LOG=foo).
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15.2 Closure compatibility

Rust closures have a convenient subtyping property: you can pass any kind of
closure (as long as the arguments and return types match) to functions that
expect a ||. Thus, when writing a higher-order function that only calls its
function argument, and does nothing else with it, you should almost always
declare the type of that argument as ||. That way, callers may pass any kind of
closure.

fn call_twice(f: ||) { f(); f(); }
let closure = || { "I’m a closure, and it doesn’t matter what type I am"; };
fn function() { "I’m a normal function"; }
call_twice(closure);
call_twice(function);

Note: Both the syntax and the semantics will be changing in small
ways. At the moment they can be unsound in some scenarios, partic-
ularly with non-copyable types.

16 Methods

Methods are like functions except that they always begin with a special argument,
called self, which has the type of the method’s receiver. The self argument
is like this in C++ and many other languages. Methods are called with dot
notation, as in my_vec.len().

Implementations, written with the impl keyword, can define methods on most
Rust types, including structs and enums. As an example, let’s define a draw
method on our Shape enum.

# fn draw_circle(p: Point, f: f64) { }
# fn draw_rectangle(p: Point, p: Point) { }
struct Point {

x: f64,
y: f64

}

enum Shape {
Circle(Point, f64),
Rectangle(Point, Point)

}

impl Shape {
fn draw(&self) {
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match *self {
Circle(p, f) => draw_circle(p, f),
Rectangle(p1, p2) => draw_rectangle(p1, p2)

}
}

}

let s = Circle(Point { x: 1.0, y: 2.0 }, 3.0);
s.draw();

This defines an implementation for Shape containing a single method, draw. In
most respects the draw method is defined like any other function, except for the
name self.

The type of self is the type on which the method is implemented, or a pointer
thereof. As an argument it is written either self, &self, or ~self. A caller
must in turn have a compatible pointer type to call the method.

# fn draw_circle(p: Point, f: f64) { }
# fn draw_rectangle(p: Point, p: Point) { }
# struct Point { x: f64, y: f64 }
# enum Shape {
# Circle(Point, f64),
# Rectangle(Point, Point)
# }
impl Shape {

fn draw_reference(&self) { /* ... */ }
fn draw_owned(~self) { /* ... */ }
fn draw_value(self) { /* ... */ }

}

let s = Circle(Point { x: 1.0, y: 2.0 }, 3.0);

(~s).draw_owned();
(&s).draw_reference();
s.draw_value();

Methods typically take a reference self type, so the compiler will go to great
lengths to convert a callee to a reference.

# fn draw_circle(p: Point, f: f64) { }
# fn draw_rectangle(p: Point, p: Point) { }
# struct Point { x: f64, y: f64 }
# enum Shape {
# Circle(Point, f64),
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# Rectangle(Point, Point)
# }
# impl Shape {
# fn draw_reference(&self) { /* ... */ }
# fn draw_owned(~self) { /* ... */ }
# fn draw_value(self) { /* ... */ }
# }
# let s = Circle(Point { x: 1.0, y: 2.0 }, 3.0);
// As with typical function arguments, managed and owned pointers
// are automatically converted to references

(@s).draw_reference();
(~s).draw_reference();

// Unlike typical function arguments, the self value will
// automatically be referenced ...
s.draw_reference();

// ... and dereferenced
(& &s).draw_reference();

// ... and dereferenced and borrowed
(&@~s).draw_reference();

Implementations may also define standalone (sometimes called “static”) methods.
The absence of a self parameter distinguishes such methods. These methods
are the preferred way to define constructor functions.

impl Circle {
fn area(&self) -> f64 { /* ... */ }
fn new(area: f64) -> Circle { /* ... */ }

}

To call such a method, just prefix it with the type name and a double colon:

use std::f64::consts::PI;
struct Circle { radius: f64 }
impl Circle {

fn new(area: f64) -> Circle { Circle { radius: (area / PI).sqrt() } }
}
let c = Circle::new(42.5);
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17 Generics

Throughout this tutorial, we’ve been defining functions that act only on specific
data types. With type parameters we can also define functions whose arguments
have generic types, and which can be invoked with a variety of types. Consider
a generic map function, which takes a function function and a vector vector
and returns a new vector consisting of the result of applying function to each
element of vector:

fn map<T, U>(vector: &[T], function: |v: &T| -> U) -> ~[U] {
let mut accumulator = ~[];
for element in vector.iter() {

accumulator.push(function(element));
}
return accumulator;

}

When defined with type parameters, as denoted by <T, U>, this function can be
applied to any type of vector, as long as the type of function’s argument and
the type of the vector’s contents agree with each other.

Inside a generic function, the names of the type parameters (capitalized by
convention) stand for opaque types. All you can do with instances of these types
is pass them around: you can’t apply any operations to them or pattern-match
on them. Note that instances of generic types are often passed by pointer. For
example, the parameter function() is supplied with a pointer to a value of type
T and not a value of type T itself. This ensures that the function works with the
broadest set of types possible, since some types are expensive or illegal to copy
and pass by value.

Generic type, struct, and enum declarations follow the same pattern:

extern crate collections;
type Set<T> = collections::HashMap<T, ()>;

struct Stack<T> {
elements: ~[T]

}

enum Option<T> {
Some(T),
None

}
# fn main() {}
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These declarations can be instantiated to valid types like Set<int>, Stack<int>,
and Option<int>.

The last type in that example, Option, appears frequently in Rust code. Because
Rust does not have null pointers (except in unsafe code), we need another way
to write a function whose result isn’t defined on every possible combination of
arguments of the appropriate types. The usual way is to write a function that
returns Option<T> instead of T.

# struct Point { x: f64, y: f64 }
# enum Shape { Circle(Point, f64), Rectangle(Point, Point) }
fn radius(shape: Shape) -> Option<f64> {

match shape {
Circle(_, radius) => Some(radius),
Rectangle(..) => None

}
}

The Rust compiler compiles generic functions very efficiently by monomorphizing
them. Monomorphization is a fancy name for a simple idea: generate a separate
copy of each generic function at each call site, a copy that is specialized to the
argument types and can thus be optimized specifically for them. In this respect,
Rust’s generics have similar performance characteristics to C++ templates.

17.1 Traits

Within a generic function—that is, a function parameterized by a type parameter,
say, T—the operations we can do on arguments of type T are quite limited. After
all, since we don’t know what type T will be instantiated with, we can’t safely
modify or query values of type T. This is where traits come into play. Traits are
Rust’s most powerful tool for writing polymorphic code. Java developers will see
them as similar to Java interfaces, and Haskellers will notice their similarities
to type classes. Rust’s traits give us a way to express bounded polymorphism:
by limiting the set of possible types that a type parameter could refer to, they
expand the number of operations we can safely perform on arguments of that
type.

As motivation, let us consider copying of values in Rust. The clone method
is not defined for values of every type. One reason is user-defined destructors:
copying a value of a type that has a destructor could result in the destructor
running multiple times. Therefore, values of types that have destructors cannot
be copied unless we explicitly implement clone for them.

This complicates handling of generic functions. If we have a function with a
type parameter T, can we copy values of type T inside that function? In Rust,
we can’t, and if we try to run the following code the compiler will complain.
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// This does not compile
fn head_bad<T>(v: &[T]) -> T {

v[0] // error: copying a non-copyable value
}

However, we can tell the compiler that the head function is only for copyable
types. In Rust, copyable types are those that implement the Clone trait. We
can then explicitly create a second copy of the value we are returning by calling
the clone method:

// This does
fn head<T: Clone>(v: &[T]) -> T {

v[0].clone()
}

The bounded type parameter T: Clone says that head can be called on an
argument of type &[T] for any T, so long as there is an implementation of the
Clone trait for T. When instantiating a generic function, we can only instantiate
it with types that implement the correct trait, so we could not apply head to a
vector whose elements are of some type that does not implement Clone.

While most traits can be defined and implemented by user code, three traits are
automatically derived and implemented for all applicable types by the compiler,
and may not be overridden:

• Send - Sendable types. Types are sendable unless they contain managed
boxes, managed closures, or references.

• Share - Types that are threadsafe These are types that are safe to be used
across several threads with access to a &T pointer. MutexArc is an example
of a sharable type with internal mutable data.

• ’static - Non-borrowed types. These are types that do not contain any
data whose lifetime is bound to a particular stack frame. These are types
that do not contain any references, or types where the only contained
references have the ’static lifetime. (For more on named lifetimes and
their uses, see the references and lifetimes guide.)

Note: These two traits were referred to as ‘kinds’ in earlier iterations
of the language, and often still are.

Additionally, the Drop trait is used to define destructors. This trait provides one
method called drop, which is automatically called when a value of the type that
implements this trait is destroyed, either because the value went out of scope or
because the garbage collector reclaimed it.
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struct TimeBomb {
explosivity: uint

}

impl Drop for TimeBomb {
fn drop(&mut self) {

for _ in range(0, self.explosivity) {
println!("blam!");

}
}

}

It is illegal to call drop directly. Only code inserted by the compiler may call it.

17.2 Declaring and implementing traits

At its simplest, a trait is a set of zero or more method signatures. For example, we
could declare the trait Printable for things that can be printed to the console,
with a single method signature:

trait Printable {
fn print(&self);

}

We say that the Printable trait provides a print method with the given
signature. This means that we can call print on an argument of any type that
implements the Printable trait.

Rust’s built-in Send and Share types are examples of traits that don’t provide
any methods.

Traits may be implemented for specific types with impls. An impl for a particular
trait gives an implementation of the methods that trait provides. For instance,
the following impls of Printable for int and ~str give implementations of the
print method.

# trait Printable { fn print(&self); }
impl Printable for int {

fn print(&self) { println!("{:?}", *self) }
}

impl Printable for ~str {
fn print(&self) { println!("{}", *self) }

}

42



# 1.print();
# (~"foo").print();

Methods defined in an impl for a trait may be called just like any other method,
using dot notation, as in 1.print().

17.3 Default method implementations in trait definitions

Sometimes, a method that a trait provides will have the same implementation for
most or all of the types that implement that trait. For instance, suppose that we
wanted bools and f32s to be printable, and that we wanted the implementation
of print for those types to be exactly as it is for int, above:

# trait Printable { fn print(&self); }
impl Printable for f32 {

fn print(&self) { println!("{:?}", *self) }
}

impl Printable for bool {
fn print(&self) { println!("{:?}", *self) }

}

# true.print();
# 3.14159.print();

This works fine, but we’ve now repeated the same definition of print in three
places. Instead of doing that, we can simply include the definition of print right
in the trait definition, instead of just giving its signature. That is, we can write
the following:

trait Printable {
// Default method implementation
fn print(&self) { println!("{:?}", *self) }

}

impl Printable for int {}

impl Printable for ~str {
fn print(&self) { println!("{}", *self) }

}

impl Printable for bool {}

impl Printable for f32 {}
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# 1.print();
# (~"foo").print();
# true.print();
# 3.14159.print();

Here, the impls of Printable for int, bool, and f32 don’t need to provide an
implementation of print, because in the absence of a specific implementation,
Rust just uses the default method provided in the trait definition. Depending on
the trait, default methods can save a great deal of boilerplate code from having
to be written in impls. Of course, individual impls can still override the default
method for print, as is being done above in the impl for ~str.

17.4 Type-parameterized traits

Traits may be parameterized by type variables. For example, a trait for general-
ized sequence types might look like the following:

trait Seq<T> {
fn length(&self) -> uint;

}

impl<T> Seq<T> for ~[T] {
fn length(&self) -> uint { self.len() }

}

The implementation has to explicitly declare the type parameter that it binds, T,
before using it to specify its trait type. Rust requires this declaration because the
impl could also, for example, specify an implementation of Seq<int>. The trait
type (appearing between impl and for) refers to a type, rather than defining
one.

The type parameters bound by a trait are in scope in each of the method
declarations. So, re-declaring the type parameter T as an explicit type parameter
for len, in either the trait or the impl, would be a compile-time error.

Within a trait definition, Self is a special type that you can think of as a type
parameter. An implementation of the trait for any given type T replaces the
Self type parameter with T. The following trait describes types that support an
equality operation:

// In a trait, ‘self‘ refers to the self argument.
// ‘Self‘ refers to the type implementing the trait.
trait Eq {

fn equals(&self, other: &Self) -> bool;
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}

// In an impl, ‘self‘ refers just to the value of the receiver
impl Eq for int {

fn equals(&self, other: &int) -> bool { *other == *self }
}

Notice that in the trait definition, equals takes a second parameter of type
Self. In contrast, in the impl, equals takes a second parameter of type int,
only using self as the name of the receiver.

Just as in type implementations, traits can define standalone (static) methods.
These methods are called by prefixing the method name with the trait name and
a double colon. The compiler uses type inference to decide which implementation
to use.

use std::f64::consts::PI;
trait Shape { fn new(area: f64) -> Self; }
struct Circle { radius: f64 }
struct Square { length: f64 }

impl Shape for Circle {
fn new(area: f64) -> Circle { Circle { radius: (area / PI).sqrt() } }

}
impl Shape for Square {

fn new(area: f64) -> Square { Square { length: (area).sqrt() } }
}

let area = 42.5;
let c: Circle = Shape::new(area);
let s: Square = Shape::new(area);

17.5 Bounded type parameters and static method dis-
patch

Traits give us a language for defining predicates on types, or abstract properties
that types can have. We can use this language to define bounds on type
parameters, so that we can then operate on generic types.

# trait Printable { fn print(&self); }
fn print_all<T: Printable>(printable_things: ~[T]) {

for thing in printable_things.iter() {
thing.print();

}
}
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Declaring T as conforming to the Printable trait (as we earlier did with Clone)
makes it possible to call methods from that trait on values of type T inside
the function. It will also cause a compile-time error when anyone tries to
call print_all on an array whose element type does not have a Printable
implementation.

Type parameters can have multiple bounds by separating them with +, as in
this version of print_all that copies elements.

# trait Printable { fn print(&self); }
fn print_all<T: Printable + Clone>(printable_things: ~[T]) {

let mut i = 0;
while i < printable_things.len() {

let copy_of_thing = printable_things[i].clone();
copy_of_thing.print();
i += 1;

}
}

Method calls to bounded type parameters are statically dispatched, imposing no
more overhead than normal function invocation, so are the preferred way to use
traits polymorphically.

This usage of traits is similar to Haskell type classes.

17.6 Trait objects and dynamic method dispatch

The above allows us to define functions that polymorphically act on values of
a single unknown type that conforms to a given trait. However, consider this
function:

# type Circle = int; type Rectangle = int;
# impl Drawable for int { fn draw(&self) {} }
# fn new_circle() -> int { 1 }
trait Drawable { fn draw(&self); }

fn draw_all<T: Drawable>(shapes: ~[T]) {
for shape in shapes.iter() { shape.draw(); }

}
# let c: Circle = new_circle();
# draw_all(~[c]);

You can call that on an array of circles, or an array of rectangles (assuming
those have suitable Drawable traits defined), but not on an array containing
both circles and rectangles. When such behavior is needed, a trait name can
alternately be used as a type, called an object.
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# trait Drawable { fn draw(&self); }
fn draw_all(shapes: &[~Drawable]) {

for shape in shapes.iter() { shape.draw(); }
}

In this example, there is no type parameter. Instead, the ~Drawable type denotes
any owned box value that implements the Drawable trait. To construct such a
value, you use the as operator to cast a value to an object:

# type Circle = int; type Rectangle = bool;
# trait Drawable { fn draw(&self); }
# fn new_circle() -> Circle { 1 }
# fn new_rectangle() -> Rectangle { true }
# fn draw_all(shapes: &[~Drawable]) {}

impl Drawable for Circle { fn draw(&self) { /* ... */ } }
impl Drawable for Rectangle { fn draw(&self) { /* ... */ } }

let c: ~Circle = ~new_circle();
let r: ~Rectangle = ~new_rectangle();
draw_all([c as ~Drawable, r as ~Drawable]);

We omit the code for new_circle and new_rectangle; imagine that these just
return Circles and Rectangles with a default size. Note that, like strings and
vectors, objects have dynamic size and may only be referred to via one of the
pointer types. Other pointer types work as well. Casts to traits may only be
done with compatible pointers so, for example, an @Circle may not be cast to
an ~Drawable.

# type Circle = int; type Rectangle = int;
# trait Drawable { fn draw(&self); }
# impl Drawable for int { fn draw(&self) {} }
# fn new_circle() -> int { 1 }
# fn new_rectangle() -> int { 2 }
// An owned object
let owny: ~Drawable = ~new_circle() as ~Drawable;
// A borrowed object
let stacky: &Drawable = &new_circle() as &Drawable;

Method calls to trait types are dynamically dispatched. Since the compiler doesn’t
know specifically which functions to call at compile time, it uses a lookup table
(also known as a vtable or dictionary) to select the method to call at runtime.

This usage of traits is similar to Java interfaces.

47



There are some built-in bounds, such as Send and Share, which are properties
of the components of types. By design, trait objects don’t know the exact type
of their contents and so the compiler cannot reason about those properties.

You can instruct the compiler, however, that the contents of a trait object must
acribe to a particular bound with a trailing colon (:). These are examples of
valid types:

trait Foo {}
trait Bar<T> {}

fn sendable_foo(f: ~Foo:Send) { /* ... */ }
fn shareable_bar<T: Share>(b: &Bar<T>: Share) { /* ... */ }

When no colon is specified (such as the type ~Foo), it is inferred that the value
ascribes to no bounds. They must be added manually if any bounds are necessary
for usage.

Builtin kind bounds can also be specified on closure types in the same way (for
example, by writing fn:Send()), and the default behaviours are the same as for
traits of the same storage class.

17.7 Trait inheritance

We can write a trait declaration that inherits from other traits, called supertraits.
Types that implement a trait must also implement its supertraits. For example,
we can define a Circle trait that inherits from Shape.

trait Shape { fn area(&self) -> f64; }
trait Circle : Shape { fn radius(&self) -> f64; }

Now, we can implement Circle on a type only if we also implement Shape.

use std::f64::consts::PI;
# trait Shape { fn area(&self) -> f64; }
# trait Circle : Shape { fn radius(&self) -> f64; }
# struct Point { x: f64, y: f64 }
# fn square(x: f64) -> f64 { x * x }
struct CircleStruct { center: Point, radius: f64 }
impl Circle for CircleStruct {

fn radius(&self) -> f64 { (self.area() / PI).sqrt() }
}
impl Shape for CircleStruct {

fn area(&self) -> f64 { PI * square(self.radius) }
}
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Notice that methods of Circle can call methods on Shape, as our radius
implementation calls the area method. This is a silly way to compute the radius
of a circle (since we could just return the radius field), but you get the idea.

In type-parameterized functions, methods of the supertrait may be called on
values of subtrait-bound type parameters. Refering to the previous example of
trait Circle : Shape:

# trait Shape { fn area(&self) -> f64; }
# trait Circle : Shape { fn radius(&self) -> f64; }
fn radius_times_area<T: Circle>(c: T) -> f64 {

// ‘c‘ is both a Circle and a Shape
c.radius() * c.area()

}

Likewise, supertrait methods may also be called on trait objects.

use std::f64::consts::PI;
# trait Shape { fn area(&self) -> f64; }
# trait Circle : Shape { fn radius(&self) -> f64; }
# struct Point { x: f64, y: f64 }
# struct CircleStruct { center: Point, radius: f64 }
# impl Circle for CircleStruct { fn radius(&self) -> f64 { (self.area() / PI).sqrt() } }
# impl Shape for CircleStruct { fn area(&self) -> f64 { PI * square(self.radius) } }

let concrete = @CircleStruct{center:Point{x:3.0,y:4.0},radius:5.0};
let mycircle: @Circle = concrete as @Circle;
let nonsense = mycircle.radius() * mycircle.area();

Note: Trait inheritance does not actually work with objects yet

17.8 Deriving implementations for traits

A small number of traits in std and extra can have implementations that can
be automatically derived. These instances are specified by placing the deriving
attribute on a data type declaration. For example, the following will mean
that Circle has an implementation for Eq and can be used with the equality
operators, and that a value of type ABC can be randomly generated and converted
to a string:

#[deriving(Eq)]
struct Circle { radius: f64 }

#[deriving(Clone, Show)]
enum ABC { A, B, C }
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The full list of derivable traits is Eq, TotalEq, Ord, TotalOrd, Encodable
Decodable, Clone, Hash, Rand, Default, Zero, FromPrimitive and Show.

18 Crates and the module system

Rust’s module system is very powerful, but because of that also somewhat
complex. Nevertheless, this section will try to explain every important aspect of
it.

18.1 Crates

In order to speak about the module system, we first need to define the medium
it exists in:

Let’s say you’ve written a program or a library, compiled it, and got the resulting
binary. In Rust, the content of all source code that the compiler directly had to
compile in order to end up with that binary is collectively called a ‘crate’.

For example, for a simple hello world program your crate only consists of this
code:

// ‘main.rs‘
fn main() {

println!("Hello world!");
}

A crate is also the unit of independent compilation in Rust: rustc always
compiles a single crate at a time, from which it produces either a library or an
executable.

Note that merely using an already compiled library in your code does not make
it part of your crate.

18.2 The module hierarchy

For every crate, all the code in it is arranged in a hierarchy of modules starting
with a single root module. That root module is called the ‘crate root’.

All modules in a crate below the crate root are declared with the mod keyword:

// This is the crate root

mod farm {
// This is the body of module ’farm’ declared in the crate root.
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fn chicken() { println!("cluck cluck"); }
fn cow() { println!("mooo"); }

mod barn {
// Body of module ’barn’

fn hay() { println!("..."); }
}

}

fn main() {
println!("Hello farm!");

}

As you can see, your module hierarchy is now three modules deep: There is
the crate root, which contains your main() function, and the module farm.
The module farm also contains two functions and a third module barn, which
contains a function hay.

(In case you already stumbled over extern crate: It isn’t directly related to a
bare mod, we’ll get to it later. )

18.3 Paths and visibility

We’ve now defined a nice module hierarchy. But how do we access the items in
it from our main function? One way to do it is to simply fully qualifying it:

mod farm {
fn chicken() { println!("cluck cluck"); }
// ...

}

fn main() {
println!("Hello chicken!");

::farm::chicken(); // Won’t compile yet, see further down
}

The ::farm::chicken construct is what we call a ‘path’.

Because it’s starting with a ::, it’s also a ‘global path’, which qualifies an item
by its full path in the module hierarchy relative to the crate root.

If the path were to start with a regular identifier, like farm::chicken, it would
be a ‘local path’ instead. We’ll get to them later.
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Now, if you actually tried to compile this code example, you’ll notice that you
get a function ’chicken’ is private error. That’s because by default, items
(fn, struct, static, mod, . . . ) are private.

To make them visible outside their containing modules, you need to mark them
public with pub:

mod farm {
pub fn chicken() { println!("cluck cluck"); }
pub fn cow() { println!("mooo"); }
// ...

}

fn main() {
println!("Hello chicken!");
::farm::chicken(); // This compiles now

}

Visibility restrictions in Rust exist only at module boundaries. This is quite
different from most object-oriented languages that also enforce restrictions on
objects themselves. That’s not to say that Rust doesn’t support encapsulation:
both struct fields and methods can be private. But this encapsulation is at the
module level, not the struct level.

For convenience, fields are public by default, and can be made private with the
priv keyword:

mod farm {
# pub type Chicken = int;
# struct Human(int);
# impl Human { pub fn rest(&self) { } }
# pub fn make_me_a_farm() -> Farm { Farm { chickens: ~[], farmer: Human(0) } }

pub struct Farm {
priv chickens: ~[Chicken],
farmer: Human

}

impl Farm {
fn feed_chickens(&self) { /* ... */ }
pub fn add_chicken(&self, c: Chicken) { /* ... */ }

}

pub fn feed_animals(farm: &Farm) {
farm.feed_chickens();

}
}
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fn main() {
let f = make_me_a_farm();
f.add_chicken(make_me_a_chicken());
farm::feed_animals(&f);
f.farmer.rest();

// This wouldn’t compile because both are private:
// ‘f.feed_chickens();‘
// ‘let chicken_counter = f.chickens.len();‘

}
# fn make_me_a_farm() -> farm::Farm { farm::make_me_a_farm() }
# fn make_me_a_chicken() -> farm::Chicken { 0 }

Exact details and specifications about visibility rules can be found in the Rust
manual.

18.4 Files and modules

One important aspect of Rust’s module system is that source files and modules
are not the same thing. You define a module hierarchy, populate it with all your
definitions, define visibility, maybe put in a fn main(), and that’s it.

The only file that’s relevant when compiling is the one that contains the body
of your crate root, and it’s only relevant because you have to pass that file to
rustc to compile your crate.

In principle, that’s all you need: You can write any Rust program as one giant
source file that contains your crate root and everything else in mod ... { ...
} declarations.

However, in practice you usually want to split up your code into multiple source
files to make it more manageable. Rust allows you to move the body of any
module into its own source file. If you declare a module without its body, like
mod foo;, the compiler will look for the files foo.rs and foo/mod.rs inside
some directory (usually the same as of the source file containing the mod foo;
declaration). If it finds either, it uses the content of that file as the body of the
module. If it finds both, that’s a compile error.

To move the content of mod farm into its own file, you can write:

// ‘main.rs‘ - contains body of the crate root
mod farm; // Compiler will look for ‘farm.rs‘ and ‘farm/mod.rs‘

fn main() {
println!("Hello farm!");
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::farm::cow();
}

// ‘farm.rs‘ - contains body of module ’farm’ in the crate root
pub fn chicken() { println!("cluck cluck"); }
pub fn cow() { println!("mooo"); }

pub mod barn {
pub fn hay() { println!("..."); }

}
# fn main() { }

In short, mod foo; is just syntactic sugar for mod foo { /* content of
<...>/foo.rs or <...>/foo/mod.rs */ }.

This also means that having two or more identical mod foo; declarations some-
where in your crate hierarchy is generally a bad idea, just like copy-and-paste-ing
a module into multiple places is a bad idea. Both will result in duplicate and
mutually incompatible definitions.

When rustc resolves these module declarations, it starts by looking in the parent
directory of the file containing the mod foo declaration. For example, given a
file with the module body:

// ‘src/main.rs‘
mod plants;
mod animals {

mod fish;
mod mammals {

mod humans;
}

}

The compiler will look for these files, in this order:

src/plants.rs
src/plants/mod.rs

src/animals/fish.rs
src/animals/fish/mod.rs

src/animals/mammals/humans.rs
src/animals/mammals/humans/mod.rs

Keep in mind that identical module hierarchies can still lead to different path
lookups depending on how and where you’ve moved a module body to its own
file. For example, if you move the animals module into its own file:
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// ‘src/main.rs‘
mod plants;
mod animals;

// ‘src/animals.rs‘ or ‘src/animals/mod.rs‘
mod fish;
mod mammals {

mod humans;
}

. . . then the source files of mod animals’s submodules can either be in the same
directory as the animals source file or in a subdirectory of its directory. If the
animals file is src/animals.rs, rustc will look for:

src/animals.rs
src/fish.rs
src/fish/mod.rs

src/mammals/humans.rs
src/mammals/humans/mod.rs

If the animals file is src/animals/mod.rs, rustc will look for:

src/animals/mod.rs
src/animals/fish.rs
src/animals/fish/mod.rs

src/animals/mammals/humans.rs
src/animals/mammals/humans/mod.rs

These rules allow you to write small modules consisting of single source files which
can live in the same directory as well as large modules which group submodule
source files in subdirectories.

If you need to override where rustc will look for the file containing a module’s
source code, use the path compiler directive. For example, to load a classified
module from a different file:

#[path="../../area51/alien.rs"]
mod classified;
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18.5 Importing names into the local scope

Always referring to definitions in other modules with their global path gets old
really fast, so Rust has a way to import them into the local scope of your module:
use-statements.

They work like this: At the beginning of any module body, fn body, or any other
block you can write a list of use-statements, consisting of the keyword use and
a global path to an item without the :: prefix. For example, this imports cow
into the local scope:

use farm::cow;
# mod farm { pub fn cow() { println!("I’m a hidden ninja cow!") } }
# fn main() { cow() }

The path you give to use is per default global, meaning relative to the crate
root, no matter how deep the module hierarchy is, or whether the module body
it’s written in is contained in its own file (remember: files are irrelevant).

This is different to other languages, where you often only find a single import
construct that combines the semantic of mod foo; and use-statements, and
which tend to work relative to the source file or use an absolute file path - Rubys
require or C/C++’s #include come to mind.

However, it’s also possible to import things relative to the module of the use-
statement: Adding a super:: in front of the path will start in the parent module,
while adding a self:: prefix will start in the current module:

# mod workaround {
# pub fn some_parent_item(){ println!("...") }
# mod foo {
use super::some_parent_item;
use self::some_child_module::some_item;
# pub fn bar() { some_parent_item(); some_item() }
# pub mod some_child_module { pub fn some_item() {} }
# }
# }

Again - relative to the module, not to the file.

Imports are also shadowed by local definitions: For each name you mention in a
module/block, rust will first look at all items that are defined locally, and only
if that results in no match look at items you brought in scope with corresponding
use statements.

# // FIXME: Allow unused import in doc test
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use farm::cow;
// ...
# mod farm { pub fn cow() { println!("Hidden ninja cow is hidden.") } }
fn cow() { println!("Mooo!") }

fn main() {
cow() // resolves to the locally defined ‘cow()‘ function

}

To make this behavior more obvious, the rule has been made that use-statement
always need to be written before any declaration, like in the example above.
This is a purely artificial rule introduced because people always assumed they
shadowed each other based on order, despite the fact that all items in rust are
mutually recursive, order independent definitions.

One odd consequence of that rule is that use statements also go in front of any
mod declaration, even if they refer to things inside them:

use farm::cow;
mod farm {

pub fn cow() { println!("Moooooo?") }
}

fn main() { cow() }

This is what our farm example looks like with use statements:

use farm::chicken;
use farm::cow;
use farm::barn;

mod farm {
pub fn chicken() { println!("cluck cluck"); }
pub fn cow() { println!("mooo"); }

pub mod barn {
pub fn hay() { println!("..."); }

}
}

fn main() {
println!("Hello farm!");

// Can now refer to those names directly:
chicken();
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cow();
barn::hay();

}

And here an example with multiple files:

// ‘a.rs‘ - crate root
use b::foo;
mod b;
fn main() { foo(); }

// ‘b.rs‘
use b::c::bar;
pub mod c;
pub fn foo() { bar(); }

// ‘c.rs‘
pub fn bar() { println!("Baz!"); }
# fn main() {}

There also exist two short forms for importing multiple names at once:

1. Explicit mention multiple names as the last element of an use path:

use farm::{chicken, cow};
# mod farm {
# pub fn cow() { println!("Did I already mention how hidden and ninja I am?") }
# pub fn chicken() { println!("I’m Bat-chicken, guardian of the hidden tutorial code.") }
# }
# fn main() { cow(); chicken() }

2. Import everything in a module with a wildcard:

use farm::*;
# mod farm {
# pub fn cow() { println!("Bat-chicken? What a stupid name!") }
# pub fn chicken() { println!("Says the ’hidden ninja’ cow.") }
# }
# fn main() { cow(); chicken() }

Note: This feature of the compiler is currently gated behind the
#[feature(globs)] directive. More about these directives can be
found in the manual.
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However, that’s not all. You can also rename an item while you’re bringing it
into scope:

use egg_layer = farm::chicken;
# mod farm { pub fn chicken() { println!("Laying eggs is fun!") } }
// ...

fn main() {
egg_layer();

}

In general, use creates an local alias: An alternate path and a possibly different
name to access the same item, without touching the original, and with both
being interchangeable.

18.6 Reexporting names

It is also possible to reexport items to be accessible under your module.

For that, you write pub use:

mod farm {
pub use self::barn::hay;

pub fn chicken() { println!("cluck cluck"); }
pub fn cow() { println!("mooo"); }

mod barn {
pub fn hay() { println!("..."); }

}
}

fn main() {
farm::chicken();
farm::cow();
farm::hay();

}

Just like in normal use statements, the exported names merely represent an
alias to the same thing and can also be renamed.

The above example also demonstrate what you can use pub use for: The nested
barn module is private, but the pub use allows users of the module farm to
access a function from barn without needing to know that barn exists.

In other words, you can use them to decouple an public api from their internal
implementation.
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18.7 Using libraries

So far we’ve only talked about how to define and structure your own crate.

However, most code out there will want to use preexisting libraries, as there
really is no reason to start from scratch each time you start a new project.

In Rust terminology, we need a way to refer to other crates.

For that, Rust offers you the extern crate declaration:

extern crate num;
// ‘num‘ ships with Rust (much like ‘extra‘; more details further down).

fn main() {
// The rational number ’1/2’:
let one_half = ::num::rational::Ratio::new(1, 2);

}

Despite its name, extern crate is a distinct construct from regular mod declara-
tions: A statement of the form extern crate foo; will cause rustc to search
for the crate foo, and if it finds a matching binary it lets you use it from inside
your crate.

The effect it has on your module hierarchy mirrors aspects of both mod and use:

• Like mod, it causes rustc to actually emit code: The linkage information
the binary needs to use the library foo.

• But like use, all extern crate statements that refer to the same library
are interchangeable, as each one really just presents an alias to an external
module (the crate root of the library you’re linking against).

Remember how use-statements have to go before local declarations because the
latter shadows the former? Well, extern crate statements also have their own
rules in that regard: Both use and local declarations can shadow them, so the
rule is that extern crate has to go in front of both use and local declarations.

Which can result in something like this:

extern crate num;

use farm::dog;
use num::rational::Ratio;

mod farm {
pub fn dog() { println!("woof"); }
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}

fn main() {
farm::dog();
let a_third = Ratio::new(1, 3);

}

It’s a bit weird, but it’s the result of shadowing rules that have been set that
way because they model most closely what people expect to shadow.

18.8 Crate metadata and settings

For every crate you can define a number of metadata items, such as link name, ver-
sion or author. You can also toggle settings that have crate-global consequences.
Both mechanism work by providing attributes in the crate root.

For example, Rust uniquely identifies crates by their link metadata, which
includes the link name and the version. It also hashes the filename and the
symbols in a binary based on the link metadata, allowing you to use two different
versions of the same library in a crate without conflict.

Therefore, if you plan to compile your crate as a library, you should annotate it
with that information:

// ‘lib.rs‘

# #[crate_type = "lib"];
#[crate_id = "farm#2.5"];

// ...
# fn farm() {}

You can also specify crate id information in a extern crate statement. For
example, these extern crate statements would both accept and select the crate
define above:

extern crate farm;
extern crate farm = "farm#2.5";
extern crate my_farm = "farm";

Other crate settings and metadata include things like enabling/disabling certain
errors or warnings, or setting the crate type (library or executable) explicitly:
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// ‘lib.rs‘
// ...

// This crate is a library ("bin" is the default)
#[crate_id = "farm#2.5"];
#[crate_type = "lib"];

// Turn on a warning
#[warn(non_camel_case_types)]
# fn farm() {}

18.9 A minimal example

Now for something that you can actually compile yourself.

We define two crates, and use one of them as a library in the other.

// ‘world.rs‘
#[crate_id = "world#0.42"];

# mod secret_module_to_make_this_test_run {
pub fn explore() -> &’static str { "world" }
# }

// ‘main.rs‘
extern crate world;
fn main() { println!("hello {}", world::explore()); }

Now compile and run like this (adjust to your platform if necessary):

> rustc --crate-type=lib world.rs # compiles libworld-<HASH>-0.42.so
> rustc main.rs -L . # compiles main
> ./main
"hello world"

Notice that the library produced contains the version in the file name as well as
an inscrutable string of alphanumerics. As explained in the previous paragraph,
these are both part of Rust’s library versioning scheme. The alphanumerics are
a hash representing the crate’s id.

18.10 The standard library and the prelude

While reading the examples in this tutorial, you might have asked yourself where
all those magical predefined items like range are coming from.
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The truth is, there’s nothing magical about them: They are all defined normally
in the std library, which is a crate that ships with Rust.

The only magical thing that happens is that rustc automatically inserts this
line into your crate root:

extern crate std;

As well as this line into every module body:

use std::prelude::*;

The role of the prelude module is to re-export common definitions from std.

This allows you to use common types and functions like Option<T> or range
without needing to import them. And if you need something from std that’s
not in the prelude, you just have to import it with an use statement.

For example, it re-exports range which is defined in std::iter::range:

use iter_range = std::iter::range;

fn main() {
// ‘range‘ is imported by default
for _ in range(0, 10) {}

// Doesn’t hinder you from importing it under a different name yourself
for _ in iter_range(0, 10) {}

// Or from not using the automatic import.
for _ in ::std::iter::range(0, 10) {}

}

Both auto-insertions can be disabled with an attribute if necessary:

// In the crate root:
#[no_std];

// In any module:
#[no_implicit_prelude];

See the API documentation for details.
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19 What next?

Now that you know the essentials, check out any of the additional guides on
individual topics.

• Pointers

• Lifetimes

• Tasks and communication

• Macros

• The foreign function interface

• Containers and iterators

• Documenting Rust code

• Testing Rust code

• The Rust Runtime

There is further documentation on the wiki, however those tend to be even more
out of date as this document.
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