1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/*!
 * A type representing values that may be computed concurrently and
 * operations for working with them.
 *
 * # Example
 *
 * ```rust
 * use sync::Future;
 * # fn fib(n: uint) -> uint {42};
 * # fn make_a_sandwich() {};
 * let mut delayed_fib = Future::spawn(proc() { fib(5000) });
 * make_a_sandwich();
 * println!("fib(5000) = {}", delayed_fib.get())
 * ```
 */

#![allow(missing_doc)]

use std::mem::replace;

/// A type encapsulating the result of a computation which may not be complete
pub struct Future<A> {
    priv state: FutureState<A>,
}

enum FutureState<A> {
    Pending(proc:Send() -> A),
    Evaluating,
    Forced(A)
}

/// Methods on the `future` type
impl<A:Clone> Future<A> {
    pub fn get(&mut self) -> A {
        //! Get the value of the future.
        (*(self.get_ref())).clone()
    }
}

impl<A> Future<A> {
    /// Gets the value from this future, forcing evaluation.
    pub fn unwrap(mut self) -> A {
        self.get_ref();
        let state = replace(&mut self.state, Evaluating);
        match state {
            Forced(v) => v,
            _ => fail!( "Logic error." ),
        }
    }

    pub fn get_ref<'a>(&'a mut self) -> &'a A {
        /*!
        * Executes the future's closure and then returns a reference
        * to the result.  The reference lasts as long as
        * the future.
        */
        match self.state {
            Forced(ref v) => return v,
            Evaluating => fail!("Recursive forcing of future!"),
            Pending(_) => {
                match replace(&mut self.state, Evaluating) {
                    Forced(_) | Evaluating => fail!("Logic error."),
                    Pending(f) => {
                        self.state = Forced(f());
                        self.get_ref()
                    }
                }
            }
        }
    }

    pub fn from_value(val: A) -> Future<A> {
        /*!
         * Create a future from a value.
         *
         * The value is immediately available and calling `get` later will
         * not block.
         */

        Future {state: Forced(val)}
    }

    pub fn from_fn(f: proc:Send() -> A) -> Future<A> {
        /*!
         * Create a future from a function.
         *
         * The first time that the value is requested it will be retrieved by
         * calling the function.  Note that this function is a local
         * function. It is not spawned into another task.
         */

        Future {state: Pending(f)}
    }
}

impl<A:Send> Future<A> {
    pub fn from_receiver(rx: Receiver<A>) -> Future<A> {
        /*!
         * Create a future from a port
         *
         * The first time that the value is requested the task will block
         * waiting for the result to be received on the port.
         */

        Future::from_fn(proc() {
            rx.recv()
        })
    }

    pub fn spawn(blk: proc:Send() -> A) -> Future<A> {
        /*!
         * Create a future from a unique closure.
         *
         * The closure will be run in a new task and its result used as the
         * value of the future.
         */

        let (tx, rx) = channel();

        spawn(proc() {
            tx.send(blk());
        });

        Future::from_receiver(rx)
    }
}

#[cfg(test)]
mod test {
    use future::Future;

    use std::task;

    #[test]
    fn test_from_value() {
        let mut f = Future::from_value(~"snail");
        assert_eq!(f.get(), ~"snail");
    }

    #[test]
    fn test_from_receiver() {
        let (tx, rx) = channel();
        tx.send(~"whale");
        let mut f = Future::from_receiver(rx);
        assert_eq!(f.get(), ~"whale");
    }

    #[test]
    fn test_from_fn() {
        let mut f = Future::from_fn(proc() ~"brail");
        assert_eq!(f.get(), ~"brail");
    }

    #[test]
    fn test_interface_get() {
        let mut f = Future::from_value(~"fail");
        assert_eq!(f.get(), ~"fail");
    }

    #[test]
    fn test_interface_unwrap() {
        let f = Future::from_value(~"fail");
        assert_eq!(f.unwrap(), ~"fail");
    }

    #[test]
    fn test_get_ref_method() {
        let mut f = Future::from_value(22);
        assert_eq!(*f.get_ref(), 22);
    }

    #[test]
    fn test_spawn() {
        let mut f = Future::spawn(proc() ~"bale");
        assert_eq!(f.get(), ~"bale");
    }

    #[test]
    #[should_fail]
    fn test_futurefail() {
        let mut f = Future::spawn(proc() fail!());
        let _x: ~str = f.get();
    }

    #[test]
    fn test_sendable_future() {
        let expected = "schlorf";
        let f = Future::spawn(proc() { expected });
        task::spawn(proc() {
            let mut f = f;
            let actual = f.get();
            assert_eq!(actual, expected);
        });
    }
}