1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/*!
 * Concurrency-enabled mechanisms for sharing mutable and/or immutable state
 * between tasks.
 */

use std::cast;
use std::ptr;
use std::rt::global_heap;
use std::sync::atomics;

/// An atomically reference counted wrapper for shared state.
///
/// # Example
///
/// In this example, a large vector of floats is shared between several tasks.
/// With simple pipes, without `Arc`, a copy would have to be made for each
/// task.
///
/// ```rust
/// use sync::Arc;
///
/// fn main() {
///     let numbers = Vec::from_fn(100, |i| i as f32);
///     let shared_numbers = Arc::new(numbers);
///
///     for _ in range(0, 10) {
///         let child_numbers = shared_numbers.clone();
///
///         spawn(proc() {
///             let local_numbers = child_numbers.as_slice();
///
///             // Work with the local numbers
///         });
///     }
/// }
/// ```
#[unsafe_no_drop_flag]
pub struct Arc<T> {
    priv x: *mut ArcInner<T>,
}

/// A weak pointer to an `Arc`.
///
/// Weak pointers will not keep the data inside of the `Arc` alive, and can be
/// used to break cycles between `Arc` pointers.
#[unsafe_no_drop_flag]
pub struct Weak<T> {
    priv x: *mut ArcInner<T>,
}

struct ArcInner<T> {
    strong: atomics::AtomicUint,
    weak: atomics::AtomicUint,
    data: T,
}

impl<T: Share + Send> Arc<T> {
    /// Create an atomically reference counted wrapper.
    #[inline]
    pub fn new(data: T) -> Arc<T> {
        // Start the weak pointer count as 1 which is the weak pointer that's
        // held by all the strong pointers (kinda), see std/rc.rs for more info
        let x = ~ArcInner {
            strong: atomics::AtomicUint::new(1),
            weak: atomics::AtomicUint::new(1),
            data: data,
        };
        Arc { x: unsafe { cast::transmute(x) } }
    }

    #[inline]
    fn inner<'a>(&'a self) -> &'a ArcInner<T> {
        // This unsafety is ok because while this arc is alive we're guaranteed
        // that the inner pointer is valid. Furthermore, we know that the
        // `ArcInner` structure itself is `Share` because the inner data is
        // `Share` as well, so we're ok loaning out an immutable pointer to
        // these contents.
        unsafe { &*self.x }
    }

    /// Downgrades a strong pointer to a weak pointer
    ///
    /// Weak pointers will not keep the data alive. Once all strong references
    /// to the underlying data have been dropped, the data itself will be
    /// destroyed.
    pub fn downgrade(&self) -> Weak<T> {
        // See the clone() impl for why this is relaxed
        self.inner().weak.fetch_add(1, atomics::Relaxed);
        Weak { x: self.x }
    }
}

impl<T: Share + Send> Clone for Arc<T> {
    /// Duplicate an atomically reference counted wrapper.
    ///
    /// The resulting two `Arc` objects will point to the same underlying data
    /// object. However, one of the `Arc` objects can be sent to another task,
    /// allowing them to share the underlying data.
    #[inline]
    fn clone(&self) -> Arc<T> {
        // Using a relaxed ordering is alright here, as knowledge of the
        // original reference prevents other threads from erroneously deleting
        // the object.
        //
        // As explained in the [Boost documentation][1], Increasing the
        // reference counter can always be done with memory_order_relaxed: New
        // references to an object can only be formed from an existing
        // reference, and passing an existing reference from one thread to
        // another must already provide any required synchronization.
        //
        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
        self.inner().strong.fetch_add(1, atomics::Relaxed);
        Arc { x: self.x }
    }
}

// FIXME(#13042): this should have T: Send, and use self.inner()
impl<T> Deref<T> for Arc<T> {
    #[inline]
    fn deref<'a>(&'a self) -> &'a T {
        let inner = unsafe { &*self.x };
        &inner.data
    }
}

impl<T: Send + Share + Clone> Arc<T> {
    /// Acquires a mutable pointer to the inner contents by guaranteeing that
    /// the reference count is one (no sharing is possible).
    ///
    /// This is also referred to as a copy-on-write operation because the inner
    /// data is cloned if the reference count is greater than one.
    #[inline]
    #[experimental]
    pub fn make_unique<'a>(&'a mut self) -> &'a mut T {
        if self.inner().strong.load(atomics::SeqCst) != 1 {
            *self = Arc::new(self.deref().clone())
        }
        // This unsafety is ok because we're guaranteed that the pointer
        // returned is the *only* pointer that will ever be returned to T. Our
        // reference count is guaranteed to be 1 at this point, and we required
        // the Arc itself to be `mut`, so we're returning the only possible
        // reference to the inner data.
        unsafe { cast::transmute_mut(self.deref()) }
    }
}

#[unsafe_destructor]
impl<T: Share + Send> Drop for Arc<T> {
    fn drop(&mut self) {
        // This structure has #[unsafe_no_drop_flag], so this drop glue may run
        // more than once (but it is guaranteed to be zeroed after the first if
        // it's run more than once)
        if self.x.is_null() { return }

        // Because `fetch_sub` is already atomic, we do not need to synchronize
        // with other threads unless we are going to delete the object. This
        // same logic applies to the below `fetch_sub` to the `weak` count.
        if self.inner().strong.fetch_sub(1, atomics::Release) != 1 { return }

        // This fence is needed to prevent reordering of use of the data and
        // deletion of the data. Because it is marked `Release`, the
        // decreasing of the reference count sychronizes with this `Acquire`
        // fence. This means that use of the data happens before decreasing
        // the refernce count, which happens before this fence, which
        // happens before the deletion of the data.
        //
        // As explained in the [Boost documentation][1],
        //
        // It is important to enforce any possible access to the object in
        // one thread (through an existing reference) to *happen before*
        // deleting the object in a different thread. This is achieved by a
        // "release" operation after dropping a reference (any access to the
        // object through this reference must obviously happened before),
        // and an "acquire" operation before deleting the object.
        //
        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
        atomics::fence(atomics::Acquire);

        // Destroy the data at this time, even though we may not free the box
        // allocation itself (there may still be weak pointers lying around).
        unsafe { drop(ptr::read(&self.inner().data)); }

        if self.inner().weak.fetch_sub(1, atomics::Release) == 1 {
            atomics::fence(atomics::Acquire);
            unsafe { global_heap::exchange_free(self.x as *u8) }
        }
    }
}

impl<T: Share + Send> Weak<T> {
    /// Attempts to upgrade this weak reference to a strong reference.
    ///
    /// This method will fail to upgrade this reference if the strong reference
    /// count has already reached 0, but if there are still other active strong
    /// references this function will return a new strong reference to the data
    pub fn upgrade(&self) -> Option<Arc<T>> {
        // We use a CAS loop to increment the strong count instead of a
        // fetch_add because once the count hits 0 is must never be above 0.
        let inner = self.inner();
        loop {
            let n = inner.strong.load(atomics::SeqCst);
            if n == 0 { return None }
            let old = inner.strong.compare_and_swap(n, n + 1, atomics::SeqCst);
            if old == n { return Some(Arc { x: self.x }) }
        }
    }

    #[inline]
    fn inner<'a>(&'a self) -> &'a ArcInner<T> {
        // See comments above for why this is "safe"
        unsafe { &*self.x }
    }
}

impl<T: Share + Send> Clone for Weak<T> {
    #[inline]
    fn clone(&self) -> Weak<T> {
        // See comments in Arc::clone() for why this is relaxed
        self.inner().weak.fetch_add(1, atomics::Relaxed);
        Weak { x: self.x }
    }
}

#[unsafe_destructor]
impl<T: Share + Send> Drop for Weak<T> {
    fn drop(&mut self) {
        // see comments above for why this check is here
        if self.x.is_null() { return }

        // If we find out that we were the last weak pointer, then its time to
        // deallocate the data entirely. See the discussion in Arc::drop() about
        // the memory orderings
        if self.inner().weak.fetch_sub(1, atomics::Release) == 1 {
            atomics::fence(atomics::Acquire);
            unsafe { global_heap::exchange_free(self.x as *u8) }
        }
    }
}

#[cfg(test)]
#[allow(experimental)]
mod tests {
    use super::{Arc, Weak};
    use std::sync::atomics;
    use std::task;
    use Mutex;

    struct Canary(*mut atomics::AtomicUint);

    impl Drop for Canary
    {
        fn drop(&mut self) {
            unsafe {
                match *self {
                    Canary(c) => {
                        (*c).fetch_add(1, atomics::SeqCst);
                    }
                }
            }
        }
    }

    #[test]
    fn manually_share_arc() {
        let v = vec!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        let arc_v = Arc::new(v);

        let (tx, rx) = channel();

        task::spawn(proc() {
            let arc_v: Arc<Vec<int>> = rx.recv();
            assert_eq!(*arc_v.get(3), 4);
        });

        tx.send(arc_v.clone());

        assert_eq!(*arc_v.get(2), 3);
        assert_eq!(*arc_v.get(4), 5);

        info!("{:?}", arc_v);
    }

    #[test]
    fn test_cowarc_clone_make_unique() {
        let mut cow0 = Arc::new(75u);
        let mut cow1 = cow0.clone();
        let mut cow2 = cow1.clone();

        assert!(75 == *cow0.make_unique());
        assert!(75 == *cow1.make_unique());
        assert!(75 == *cow2.make_unique());

        *cow0.make_unique() += 1;
        *cow1.make_unique() += 2;
        *cow2.make_unique() += 3;

        assert!(76 == *cow0);
        assert!(77 == *cow1);
        assert!(78 == *cow2);

        // none should point to the same backing memory
        assert!(*cow0 != *cow1);
        assert!(*cow0 != *cow2);
        assert!(*cow1 != *cow2);
    }

    #[test]
    fn test_cowarc_clone_unique2() {
        let mut cow0 = Arc::new(75u);
        let cow1 = cow0.clone();
        let cow2 = cow1.clone();

        assert!(75 == *cow0);
        assert!(75 == *cow1);
        assert!(75 == *cow2);

        *cow0.make_unique() += 1;

        assert!(76 == *cow0);
        assert!(75 == *cow1);
        assert!(75 == *cow2);

        // cow1 and cow2 should share the same contents
        // cow0 should have a unique reference
        assert!(*cow0 != *cow1);
        assert!(*cow0 != *cow2);
        assert!(*cow1 == *cow2);
    }

    #[test]
    fn test_live() {
        let x = Arc::new(5);
        let y = x.downgrade();
        assert!(y.upgrade().is_some());
    }

    #[test]
    fn test_dead() {
        let x = Arc::new(5);
        let y = x.downgrade();
        drop(x);
        assert!(y.upgrade().is_none());
    }

    #[test]
    fn weak_self_cyclic() {
        struct Cycle {
            x: Mutex<Option<Weak<Cycle>>>
        }

        let a = Arc::new(Cycle { x: Mutex::new(None) });
        let b = a.clone().downgrade();
        *a.deref().x.lock().deref_mut() = Some(b);

        // hopefully we don't double-free (or leak)...
    }

    #[test]
    fn drop_arc() {
        let mut canary = atomics::AtomicUint::new(0);
        let x = Arc::new(Canary(&mut canary as *mut atomics::AtomicUint));
        drop(x);
        assert!(canary.load(atomics::Acquire) == 1);
    }

    #[test]
    fn drop_arc_weak() {
        let mut canary = atomics::AtomicUint::new(0);
        let arc = Arc::new(Canary(&mut canary as *mut atomics::AtomicUint));
        let arc_weak = arc.downgrade();
        assert!(canary.load(atomics::Acquire) == 0);
        drop(arc);
        assert!(canary.load(atomics::Acquire) == 1);
        drop(arc_weak);
    }
}